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ABSTRACT 

The objective of this project is to research the technical challenges and solutions on the integration of 
plug-in electric vehicles (PEV) into the grid. This project conducted the research by leveraging 
capabilities of multiple national laboratories with vehicle/grid integration (VGI) to perform hardware-in-
the-loop (HIL) studies that integrate communication and control system with simulation and analysis 
activities. The PEV charging coordination research in this project has been performed on two main 
application cases at both residential locations and commercial buildings. 

A highly efficient centralized residential PEV charging strategy has been developed for large PEV 
populations. This strategy designed a hierarchical optimization routine that aggregates individual PEV 
charging flexibility to reduce the computational complexity of the optimization process. The charging 
control strategy has been validated on the developed residential PEV charging research platform, which is 
based on high-fidelity, validated charging system models and charging behavior models. The developed 
charging control framework has been demonstrated to be capable of effectively coordinating the charging 
of 500,000 PEVS in about 5 seconds using a standard desktop computer. The impacts of developed charging 
strategy on residential distribution feeder, e.g. voltage support and capacity deferral, have been studied 
under different PEV penetration scenarios.  
 

This project also studied PEV charging at commercial locations by building and operating a multi-
laboratory platform for development and testing of aggregator-assisted control. This PEV charging strategy 
has been designed to include the local building level control and global aggregator level’s optimal 
coordination for peak reduction. The impact on the distribution feeder of PEV charging controlled by 
commercial buildings has been investigated using the developed testing platform by studying three 
scenarios: uncontrolled, local building controlled and aggregator-assisted controlled. The analyses on the 
control strategy performance and overall system design structure helped to identify the unsolved technical 
challenges and to introduce potential solutions which can balance the competing objectives and interests 
between buildings and the distribution feeder.  
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GM0085 Project Final Report 
1. INTRODUCTION 

  As plug-in electric vehicles (PEVs) increasingly penetrate the marketplace, the integration of electric 
vehicles into the grid is essential to ensure the continued reliability and security of the grid. It has been 
widely proposed that PEVs can provide valuable grid services, such as load shifting to provide energy 
storage capacity for wind and solar generation, frequency regulation, and volt/volt‐ampere reactive 
(VAR) support. However, significant technical challenges remain before this vision becomes reality. Prior 
to broad investment in the technical and business processes required for PEVs to provide grid services, 
fundamental questions must be answered, such as the following:  

• How can PEVs provide grid services to effectively realize anticipated benefits to the grid without 
negatively impacting the grid or PEV owners?  

• What communications requirements need to be put in place to facilitate PEVs providing grid 
services?  

• What measurement and control challenges must be addressed to optimally utilize PEVs as a grid 
resource? 

This project has researched the relevant technical challenges and solutions to facilitate the integration 
of electric vehicles into the grid. Five laboratories have participated in this project: INL, ANL, NREL, 
PNNL, and LBNL. The PEV charging research in this project has been conducted from multiple scenarios 
at both residential locations and commercial buildings.  

First, this project has developed a hardware-in-the-loop platform to study integration of numerous 
electric vehicles on a residential distribution feeder.  Using this platform uncontrolled and controlled 
electric vehicle charging has been analyzed for many different electric vehicle penetration scenarios.  A 
key deliverable of this project is a PEV charging control strategy that effectively flattens the residential 
load profile while ensuring electric vehicle owners charging needs are met. This control strategy has been 
implemented by using an aggregator model that acts as an intermediary between the utility and residential 
distribution feeder.  This work is further explained in Chapter 2. 

Second, this hardware-in-the-loop platform was used to study the integration of PEV charging at 
commercial buildings.  This phase of research aimed to understand the grid services potential of multiple 
commercial buildings coordinating their PEV charging via a centralized aggregator. The aggregator 
model communicated and coordinated the PEV charging at buildings located at ANL, PNNL, and NREL.  
This work is further explained in Chapter 3. 

 

2. RESEARCH OF PEV CHARGING AT RESIDENTIAL LOCATIONS 
The initial focus of this project was to understand the grid impacts of uncontrolled Level 2 charging 

of plug-in electric vehicles (PEVs) at residential locations.  Key insights from The Electric Vehicle (EV) 
Project were used to understand the charging behavior of PEV owners and the implications of that 
behavior for PEV charge load management. These insights from the EV Project concluded that: 

1. Most PEV charging occurred at home. For example, individuals who drove Nissan LEAFs charged at 
home 84% of the time when workplace charging was not available, and 65% of the time when 
workplace charging was available [1]. 

2. Uncontrolled residential PEV charging in the evening hours was coincident with the peak of the 
non-PEV residential load. This increased the peak and the rate of ramping present in the residential 
load, both of which are undesirable from the perspective of the electric utility [2]. 
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3. Individuals tended to connect their PEVs to chargers shortly after the last trip of the day but did not 
disconnect their PEVs until the next morning, just prior to the first trip of the day. As a result, PEVs 
typically were connected to chargers all night with the opportunity to charge that entire time [3]. 

It became obvious during the EV Project that residential PEV charging could be made much more 
grid-friendly by shifting the PEV charging energy from peak-load hours to early morning hours when the 
non-PEV load is at its minimum (see Figure 1).  

 

 
Figure 1. Uncontrolled residential PEV charging is coincident with non-PEV residential load because 
individuals tend to connect their PEVs to chargers after the last trip of the day and an uncontrolled PEV 
charger begins charging immediately after a PEV is connected. PEV charging could be made 
grid-friendly by shifting the PEV charging to early morning hours. 

 

2.1 Residential PEV Charging Research Platform 
As part of the GM0085 Project, a platform was created to study the grid impacts of PEV charging at 

residential locations (see Figure 2). This platform enables the following activities: 

• Research of the grid impacts of uncontrolled PEV charging 

• Development of PEV charging control strategies 

• Investigation of the benefit of the PEV charging control strategies 
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Figure 2. Platform to research the grid impacts of uncontrolled PEV charging, develop PEV charging 
control strategies, and investigate the benefit of the PEV charging control strategies. 

This research platform contains the following important components: 

• High-fidelity PEV charging models 

• Grid Impacts Simulation Environment (RTDS, IEEE 34 node test feeder, Non-PEV Load Profile) 

• Residential PEV charging Aggregator 

The high-fidelity PEV charging models and grid impacts simulation environment are described in 
Sections 2.1.1 and 2.1.2, respectively.  The residential PEV charging aggregator is described in 
Section 2.2. 

2.1.1 High-fidelity PEV Charging Models 
To understand how PEV charging affects the electric grid, it is essential to accurately model two 

aspects of PEV charging, PEV charging behavior and how PEVs behave as loads on the grid. 

To model PEV charging behavior, PEV charging behavior data is used to initialize the high-fidelity 
PEV charging models. PEV charging behavior describes where and at what time PEV owners choose to 
charge their PEVs. PEV charging behavior data consists of the following: 

• Time PEV connected to charger 

• Time PEV disconnected from charger 

• Battery state of charge (SOC) when PEV started charging 

• Requested charge energy 

• PEV charge location 

PEV charging behavior data used in the research platform is derived from actual charging behavior 
data in The EV Project from the Pacific Gas & Electric (PG&E) service territory for 2013 Nissan LEAFs. 
The methodology used to derive PEV charging behavior data from the historical charging data is 
described in Ref. [4]. 
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To model how PEVs behave as loads on the grid, high-fidelity charging models were created for the 
2015 Nissan LEAF from laboratory testing results. These laboratory testing results were used to both 
create and then validate the PEV charging models. 

Figure 3 and Figure 4 show a comparison of the output of the PEV charging model with the 
laboratory testing results for the 2015 Nissan LEAF. Figure 3 shows that the charging model output is a 
high-fidelity representation of: 

• Efficiency as a function of charge rate 

• Power factor as a function of charge rate 

• Maximum charge rate as a function of battery SOC 

• Power and current limits as a function of voltage 

Figure 4 demonstrates that the representation of the transitions from one charge rate to another charge 
rate of the charging model for a 2015 Nissan LEAF is sufficiently accurate for understanding the impacts 
of PEV charging on the grid and developing PEV charging controls. 

 
Figure 3. Comparison of laboratory test and model output results for a 2015 Nissan LEAF. The model 
output accurately represents the charging behavior of the 2015 Nissan LEAF. 
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Figure 4. Comparison of laboratory test and model output results for a 2015 Nissan LEAF. The model 
output accurately represents the transitions from one charge rate to another charge rate. 

2.1.2 Grid Impacts Simulation Environment 
To understand how PEV charging might affect a distribution feeder and to develop and test PEV 

charging control strategies, it is important to have an accurate model of the distribution feeder system and 
non-PEV loads. 

In the GM0085 Project residential simulation platform, the distribution feeder model is simulated in a 
Real Time Digital Simulator (RTDS). The RTDS provides a real-time environment for performing 
transient simulations and high-fidelity dynamic modeling of power components and systems. The 
distribution feeder system used is the IEEE 34 node test feeder (see Figure 5). This test feeder is 
characterized by a long and lightly loaded overhead transmission lines. It has a nominal voltage of 
24.9 kV, two in-line regulators, one in-line transformer, and two shunt capacitors. 

 
Figure 5. Schematic of IEEE 34 node test feeder. 
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The non-PEV feeder load profile used in the simulation environment is derived from the typical 
PG&E residential load profile downloaded from the PG&E website [5]. The typical residential load 
profile is an hourly load profile for each calendar year over a several year period and represents the 
typical or average load of a single residence in the PG&E service area. The non-PEV feeder load profile 
is calculated by multiplying the number of residences on the feeder by the typical residential load profile. 
The typical PG&E residential profiles were used to derive both the actual and forecasted non-PEV feeder 
load profiles. The actual profile used the PG&E data from July 27, 2016, and the forecasted profile used 
the PG&E data from the previous day, July 26, 2016. Both of these days are peak load days in the typical 
PG&E residential profile for 2016 (see Figure 6). 

 
Figure 6. Typical or average load of a single residence in the PG&E area. The data on 7/27/2016 is used 
to calculate the actual feeder load profile; the data on the previous day, 7/26/2016, is used to calculate the 
forecasted feeder load profile. 

2.2 Residential PEV Charging Control Strategy Description 
The PEV charging control strategy developed in the GM0085 Project uses a centralized control 

element that will be referred to as the aggregator. The aggregator interacts with PEVs directly to 
determine the times during the day that each PEV should be charged. The aggregator functions in the 
“energy domain” by dividing each day into time segments and calculating the optimal amount of PEV 
charge energy for each time segment. In this report, each of these time segments are referred to as time 
steps. The aggregator’s primary purpose is to ensure PEV charging needs are met and to meet grid 
objectives that require shifting PEV charge energy in time such as shifting PEV charging energy to 
off-peak load times. 

The control strategy requires bi-directional communication between the aggregator and each PEV. 
This communication is summarized in the following steps and shown in Figure 7: 

• Each PEV sends its charging needs to the aggregator 

• The aggregator calculates an energy set point for each PEV for the next time step 

• The aggregator sends an energy set point to each PEV 
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Figure 7. Bi-directional communication between the aggregator and each PEV occurs once every time 
step. In a given time step the aggregator calculates energy set points for each PEV for the next time step. 

This communication sequence occurs every time step, allowing the aggregator to use the most recent 
PEV charging needs information. Since the communication sequence only occurs once every 5, 10, or 
15 minutes, this strategy is not sensitive to internet latency and does not require low latency 
communication. 

When designing the aggregator in the GM0085 Project, the dominant design criteria was scalability 
and computational efficiency. The aggregator needed to be able to calculate the energy set points for 
hundreds of thousands of PEVs on an ordinary personal computer in less than 1 minute. In order to 
achieve this, it became obvious early on that the optimization model could not represent individual PEVs. 
If each PEV is explicitly included in the optimization model, the number of decision variables is the 
product of the number of PEVs and the number of time steps in the prediction horizon. For example, as 
shown in Equation (1), an optimization model including 300,000 PEVs with a prediction horizon of 
24 hours and time step of 10 minutes would have 43.2 million decision variables. This is a very large 
optimization problem. 

 
The optimization problem can be made much smaller if the PEVs were represented collectively and 

not individually in the optimization model. When PEVs are represented collectively, their individual 
constraints are aggregated into a single set of constraints. Their individual energy set points over the 
prediction horizon are also aggregated into one set of aggregated energy set points. The number of 
decision variables in this type of reduced order optimization model does not depend on the number of 
PEVs. Rather, it is the number of time steps in the prediction horizon, which is 144 in the example shown 
in Equation (1). 

The GM0085 Project designed the aggregator to use an aggregation step followed by a reduced order 
optimization model followed by a disaggregation step. These steps are as follows: 

1. Aggregate PEV constraints 

2. Solve reduced order optimization model 

3. Allocate energy to PEVs for the next time step 
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Steps 1 and 2 allocate the total PEV charge energy over the prediction horizon to meet some grid 
objective, such as shifting PEV charging to off-peak load times. Step 3 divides the total PEV charge 
energy for the next time step among the PEVs in a way to ensure that all PEV charging needs are met. 
Figure 8 shows this process. 

 
Figure 8. Control strategy allocates the total PEV load over the prediction horizon to minimize peak load 
(Steps 1 and 2). Step 3 divides the total PEV charge energy for the next time step among the PEVs in a 
way to ensure all PEV charging needs are met. 

Figure 9 shows the data flow diagram for the aggregator. The data flow diagram includes the external 
environmental information the aggregator needs (in yellow boxes), as well as the three main analysis 
steps performed by the aggregator (in blue boxes). The external environmental information needed by the 
aggregator is as follows: 

• Load forecast of the non-PEV load for the prediction horizon 

• PEV charging needs forecast for the prediction horizon 

• Charging needs of PEVs that are currently charging 

 
Figure 9. Aggregator data flow diagram. The three main analysis steps of the aggregator are displayed in 
the blue boxes. The external environmental information the aggregator needs is displayed in the yellow 
boxes. The information passed between functional blocks is displayed in the white boxes. 
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The creation of accurate non-PEV load forecasts and PEV charging needs forecasts was not the focus 
of the GM0085 Project. When developing, debugging, and testing the control strategy, the GM0085 
Project generated these forecasts by adding randomness into available historical data. Ref. [4] describes 
the creation of PEV charging needs from historical PEV charging data. The three analysis steps 
performed by the aggregator are described in Sections 2.2.1, 2.2.2, and 2.2.3. 

2.2.1 Aggregate PEV Constraints 
Combining individual PEV charging constraints into a single aggregate set of charging constraints is 

the key insight that enabled the GM0085 Project to calculate energy set points for hundreds of thousands 
of PEVs on a personal computer in less than 1 minute. Aggregating PEV charging constraints transforms 
a potentially huge optimization problem into a reduced order optimization problem that is small and easy 
to solve quickly with minimal computational resources. 

It is not possible for PEVs to charge faster than their maximum charge rate or to charge at times when 
they are not connected to a charger. In order to enforce these conditions, all valid PEV charging is bound 
by “as soon as possible” (ASAP) charging and “as late as possible” (ALAP) charging (see Figure 10). 
ASAP charging occurs when the PEV immediately starts charging as soon as it is connected to a charger 
and continues to charge until the PEV’s charging needs are met. ALAP charging occurs when the PEV 
waits until the last minute to begin charging and the PEV’s charge needs are met just before the PEV is 
scheduled to depart. 

 
Figure 10. All PEV charging is bound by ASAP and ALAP charging. ASAP charging is when the PEV is 
charged as soon as possible. ALAP charging is when the PEV is charged as late as possible. 

There are two types of aggregate PEV constraints used in the reduced order optimization model, 
cumulative energy constraints and step energy constraints. 

Cumulative energy constraints are calculated for both ASAP charging and ALAP charging. ASAP 
charging corresponds to an upper bound and ALAP charging corresponds to a lower bound. These 
cumulative energy constraints ensure that the energy the aggregator allocates through time is sufficient to 
meet the charging needs of all PEVs. A point above the cumulative energy upper bound corresponds to a 
scenario where the aggregator is attempting to charge PEVs before they are connected to a charger or at a 
charge rate that is too large. A point below the cumulative energy lower bound corresponds to a scenario 
where the aggregator is attempting to charge PEVs after they have departed. The aggregator’s cumulative 
energy being bound by the cumulative energy constraints is a necessary but not a sufficient condition to 
ensure all PEV charging needs are met. To ensure all PEV charging needs are met, it is also necessary to 
prioritize which PEVs can charge based upon the remaining time each PEV can charge and the remaining 
energy required. The project used two types of aggregate PEV constraints in the reduced order 
optimization model, cumulative energy constraints and step energy constraints. This is discussed further 
in Section 2.2.3. 

The manner in which ASAP and ALAP cumulative energy constraints are calculated is identical. The 
only difference is whether ASAP charging or ALAP charging is used in the calculation. A cumulative 
energy constraint is the sum of the cumulative energies of all PEVs as shown in Equation (2). 
Equation (3) shows how to calculate the cumulative energy for a single PEV. 
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Figure 11 shows a graphical representation of the cumulative energy constraints for two hypothetical 

PEVs. Notice that the cumulative energy of PEV 1 and PEV 2 will always be bound by the ASAP and 
ALAP cumulative energy constraints when the charging is valid. Valid charging consists of two bounding 
criteria, first that PEVs are only allowed to charge when they are connected to a charger, and second that 
a PEV’s charge rate never exceeds its maximum charge rate. 

 
Figure 11. Graphical representation of the ASAP and ALAP cumulative energy constraints for two PEVs. 
All valid PEV charging for PEV 1 and PEV 2 is bound by the ASAP and ALAP cumulative energy 
constraints. 

Unlike cumulative energy, which is the total energy drawn by all PEVs from the beginning of their 
respective charges up to the present time step, step energy is the total energy drawn by all PEVs during a 
given time step and is the decision variable of the optimization model. The step energy upper bound and 
lower bound constraints are intended to constrain the total energy the aggregator can allocate to the PEVs 
during individual time steps. The step energy lower bound is always zero since this control strategy was 
designed for grid to vehicle charging only. The step energy upper bound for a given time step is the 
maximum amount of energy that all PEVs can collectively draw during that time step (Equation (4)). It is 
important to note that the maximum step energy for a given PEV is zero when the PEV’s charging needs 
have been met or its battery is full, since the PEV does not require any more energy. As a result, the step 
energy upper bound at a given time step depends on the step energy values of the previous time steps. 
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This creates the undesirable situation where one of the constraints of the reduced order optimization 
model (step energy upper bound) depends on the decision variable (step energy). This is the trade-off of 
the reduced order optimization model, which provides a huge reduction in the size of the optimization 
problem at the expense of making one of the constraints in the optimization model dependent on the 
decision variable. 

 
In the GM0085 Project, the step energy upper bound was calculated under the assumption that PEVs 

would be able to draw maximum power from the grid the entire time they were connected to a charger 
(see Figure 12). This simplifying assumption makes sub-optimal PEV charging a possibility. As will be 
shown in Section 2.3, this control strategy works extremely well for residential charging. Even though the 
simplifying assumption works well for residential charging it may be problematic in other charging 
situations. This is an area where future work is needed both to investigate non-residential charging 
scenarios, as well as to determine if there are better ways to estimate the step energy upper bound 
constraint. 

 
Figure 12. Graphical representation of the step energy upper bound for two hypothetical PEVs. The step 
energy upper bound was calculated under the simplifying assumption that PEVs would be able to draw 
maximum power from the grid the entire time they were connected to a charger (ALAP charging). 

2.2.2 Solve Reduced Order Optimization Model 
The reduced order optimization model is specified in Equation (5) and a graphical example of the 

step energy and cumulative energy constraints is shown in Figure 13. The optimization model decision 
variable, 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑘𝑘], is the step energy for every time step in the prediction horizon. The objective function 
in Equation (5a) allocates the step energy (PEV load) so that the total load (sum of PEV and non-PEV 
loads) has the smallest possible peak and is as flat as possible. 

The optimization model also has three sets of constraints: 

1. Constraints in Equation (5b) ensure that the cumulative energy of the optimized solution is bound by 
the cumulative energy constraints. 

2. Constraints in Equation (5c) ensure that the step energy is bound by the step energy constraints. 

3. Constraints in Equation (5d) ensure that the total energy (sum of PEV and non-PEV energy) does not 
exceed the maximum energy the feeder can supply in a single time step. 
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Figure 13. Hypothetical graphical representation of the cumulative energy constraints, the step energy 
constraints, and an optimized 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[k] for a 24-hour prediction horizon. 

2.2.3 Allocate Energy to PEVs 
Allocating energy to an individual PEV is a disaggregation step that divides 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0], the total PEV 

charge energy for the next time step, among the PEVs in a way to ensure all PEV charging needs are met. 
A calculated value called the charge priority is used to determine which PEVs should charge. The charge 
priority is a PEV’s minimum remaining charge time divided by its remaining park time as shown in 
Equation (6). A PEV’s minimum remaining charge time is the time required for the PEV’s charging 
needs to be met when the PEV is charged at its maximum charge rate. A PEV’s remaining park time is 
the time until the PEV departs. 

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑘𝑘] = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑘𝑘]
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑘𝑘]

 (6) 

Charge priority is an indication of urgency to charge. For example, a charge priority of 0.9 indicates 
that the PEV must charge at its maximum charge rate for 90% of the remaining park time to meet its 
charging needs, whereas a charge priority of 0.10 indicates that only 10% of the remaining park time is 
required to fully charge the PEV. Stated another way, a charge priority of 0.9 indicates that the PEV must 
charge at 90% of its maximum charge rate for all the remaining park time, and a charge priority of 0.10 
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indicates that the PEV must be charged at only 10% of the maximum charge rate for the remaining park 
time to fully charge the PEV. 

After charge priority has been calculated for all PEVs, charge energy is allocated to each PEV in 
descending order of charge priority. Allocating energy in this way gives a PEV with higher charge 
priority charge energy before a PEV with lower charge priority. Once the total energy allocated to the 
PEVs is equal to 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0], then all remaining PEVs are given an energy set point value of zero. 

Allocating energy to the PEVs in descending order of charge priority is a necessary, but not a. 
sufficient condition to ensure their charging needs are met. It is also necessary that the PEV energy set 
points are large enough to meet their charging needs. The control strategy accomplishes this by allocating 
energy to each PEV in the range specified by Equation (12). 

 
The lower bound in Equation (12), which is also given in Equation (8), defines the energy set point 

that will cause the charge priority to remain constant. As shown in Equation (9) and Equation (11), 
whenever the energy set point is less than 𝑒𝑒𝐿𝐿𝐿𝐿

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, the charge priority will increase, and whenever the 
energy set point is greater than 𝑒𝑒𝐿𝐿𝐿𝐿

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, the charge priority will decrease. A consequence of this control 
strategy is that a PEVs charge priority decreases when it is charged and increases when it is not charged. 
The minimum remaining charge time as a function of the energy set point is given in Equation (7). 

2.3 Residential Control Strategy Results 
The platform described in Section 2.1 was used to investigate the benefit of the PEV charging control 

strategy described in Section 2.2. In the simulation there were 75,000 homes on the distribution feeder 
where 50% of the homes owned a PEV. In these simulations, the residential charging control strategy was 
shown to provide grid services.  The grid services that were provided were voltage support and capacity 
deferral that are described in Sections 2.3.1 and 2.3.2, respectively. 

2.3.1 Voltage Support 
When PEV charging is controlled, the voltage profile on the feeder is considerably flatter. Figure 14 

shows the voltage profiles for Node A and Node B on the IEEE 34 node test feeder. Figure 15 shows the 
location of these two nodes on the feeder. Node A is closer to the feeder substation than Node B causing 
Node A to have less variation in the voltage profile than Node B. When the charging is not controlled, the 
voltage deviates outside the normally accepted limits (±5% of nominal). By contrast, when charging is 
controlled, the voltage is always within the normally accepted limits. This is significant since the need for 
infrastructure investment to maintain feeder voltage as the PEV penetration increases is reduced. 
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Figure 14. Voltage profile at Node A and Node B when PEV charging is controlled and not controlled. 
The range of acceptable voltage magnitudes (±5% of nominal) is indicated between the dashed red lines. 

 
Figure 15. Location of Node A and Node B on the IEEE 34 node test feeder. 

2.3.2 Capacity Deferral 
The residential control strategy is able to provide significant capacity deferral. Figure 16 shows the 

feeder load profiles when there are no PEVs charging, when the PEV charging is not controlled, and 
when the PEV charging is controlled using the residential control strategy. When charging is not 
controlled, each PEV begins charging as soon as it is connected to a charger and continues to charge as 
fast as possible until its charge is complete. When PEV charging is not controlled, the PEV charging 
occurs at the same time as the peak of the non-PEV load. This increases both the peak and ramping in the 
feeder load when compared to the feeder load with no PEV charging. By contrast, controlled charging 
shifts the PEV charging to off-peak hours, which flattens the feeder load profile and causes only a very 
small increase in peak load. Controlled charging in large part mitigates the need for capacity upgrades to 
residential feeders as PEV penetration increases. 
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Figure 16. Feeder load profile when there are no PEVs are charging, when PEV charging is not 
controlled, and when PEV charging is controlled. 

The peak feeder loads for the scenarios are as follows: 

• 127 MW: No PEV charging 

• 132 MW: Controlled PEV charging 

• 197 MW: Uncontrolled PEV charging 

Stated another way, controlled charging requires a 4% increase in capacity, whereas uncontrolled 
charging requires a 55% increase in capacity. 

2.3.3 Benefit of Capacity Deferral 
As PEVs directly increase the peak demand on the grid, they reduce the capacity margin planned by 

utilities. We propose to quantify the number of years lost before new investments need to be made to 
increase capacity margin. The cost of those investments is complex to find. Utilities regularly need to 
estimate the overall cost for distribution grid upgrades, for instance to define retail rates for their 
customers. However, the team does not have enough data, nor the utility knowledge to estimate the cost 
of a system reinforcement. Instead, we propose to give results in term of years of lost load growth, which 
can be used by utilities to estimate the costs for individual feeders. 

We first illustrate the methodology behind the estimation of years of lost load growth with a feeder in 
Santa Rosa, California [6]. The feeder has a current peak demand of 9.2 MW and a maximum capacity of 
12.2 MW. The feeder is providing energy to 5,533 residential customers, which have on average 
1.87 vehicles (Census survey from 2015 and 2016). Furthermore, the EV growth shown in Figure 17 
allows us to estimate the number of EVs on that feeder for each year (details are provided in 
Appendix A). From the information above and the assumption of a natural 1.1% increase in peak demand 
per year [7], a peak increase of 1.5 kW per uncontrolled EVs and a peak increase of 0.047 kW per 
controlled EVs (as addressed in Section 2.3.2). We calculate peak demand growth for three scenarios, no 
EVs, uncontrolled EVs, and controlled EVs. From this example, we can see that the few uncontrolled EVs 
in 2020 lead to the same peak demand increase as would the natural peak demand growth in 2030 (black 
dashed line in Figure 18); therefore, in 2020, uncontrolled EVs would have caused 10 years of lost load 
growth. Note that in the uncontrolled scenario, EVs are using all the feeder’s remaining capacity as soon 
as 2023 (red dashed line in Figure 18). 
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Figure 17. Projection of EVs in the total vehicle stock in California (see Appendix A). 

 
Figure 18. Peak demand increase for feeder “MONROE 1106” with uncontrolled PEVs (orange) and 
controlled PEVs (blue). The black dashed line represents the peak increase from natural growth in 2030. 
The red dashed line represents the feeder’s maximum allowed peak demand. 

We generalize our results for a residential feeder with a 10 MW peak demand. We consider that 
households drive the peak demand by consuming on average 1.6 kW on-peak; furthermore, we assume 
two vehicles per households. Note that certain residential feeders might have less households because 
their peak demand is not entirely driven by households, but also by commercial and industrial loads. 

In this analysis, we give the number of years needed for a 1.1% natural peak demand growth to match 
the 1.5 kW peak demand increase per uncontrolled EVs and 0.047 kW per controlled EVs. We find that 
by 2030 uncontrolled EVs could lead to more than 50 years of lost load growth for typical residential 
feeders (see Figure 19). By contrast when PEV charging is controlled there will be just a little over one 
year of lost load growth in 2030. This means that the capacity margin that utilities may expect to 
accommodate future load growth for the next 10, 20, or 30 years will not be affected when PEV charging 
is controlled, but may be used up by uncontrolled PEV charging in a couple of years requiring 
distribution system upgrades much sooner than anticipated. 
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Figure 19. Years of lost load growth as a function of calendar years for a typical residential distribution 
grid with a 10 MW peak demand. 

2.3.4 Computational Performance 
When designing the residential control strategy, the dominant design criteria was scalability and 

computational efficiency. The control strategy needed to be able to calculate the energy set points for 
hundreds of thousands of PEVs on an ordinary PC in less than 1 minute. Figure 20 shows the execution 
times during a day for PEV populations of 50,000, 100,000, 250,000, and 500,000. From Figure 20, we 
can see that the maximum computation time for 500,000 is a little over 4 seconds. This shows that this 
control strategy is very computationally efficient. Simulations are conducted on the demonstration 
platform by using a Linux desktop with the following specifications: Intel CPU Core 2 Duo E8400 with 
3G HZ and 14.6 GB memory. 

 
Figure 20. Residential control strategy computation times for PEV populations of 50,000, 100,000, 
250,000, and 500,000. 
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3. RESEARCH OF PEV CHARGING AT COMMERCIAL BUILDINGS 
3.1 Overview 

The objective of this project is to understand the grid services potential and assess the impacts of 
multiple commercial buildings where PEVs are charging that are connected to a distribution feeder. This 
project has developed a model for an aggregator that acts as an intermediary between the utility and 
commercial buildings with building energy management systems (BEMSs) that locally control PEV 
charging. The aggregator model is built to interface with the real-time hardware-in-the-loop platform and 
to communicate with each building and coordinate the buildings’ responses across the distribution feeder. 

The aggregator is located at Idaho National Laboratory (INL) to communicate with buildings located 
at Argonne National Laboratory (ANL), National Renewable Energy Laboratory (NREL), and Pacific 
Northwest National Laboratory (PNNL) where actual PEVs are charging. The control for these buildings 
was developed in the GM0062 Project and integrates the PEV charging at each location into the building 
load. The buildings aggregator is used to communicate with buildings and coordinate their response 
across a distribution feeder to achieve a grid objective or provide a grid service. It is the building that 
decides whether or not to participate and the building ultimately decides how to manage its energy 
consumption. The aggregator only calculates a request for buildings that have indicated availability to 
participate, and the request must fall within parameters provided by the building based on the total 
building load. The building provides these parameters, or limits, based on its own determination of 
whether it should shed (or possibly increase) the PEV charging load to maintain the appropriate overall 
load. The impact on the distribution feeder of PEV charging controlled by commercial buildings, with and 
without aggregator support, has been studied in a real-time environment with hardware in loop (HIL) 
capabilities at INL. This platform will interact with the aggregator and the building loads at ANL, NREL, 
and PNNL to understand the grid impacts of widespread PEV charging, as well as the value of the 
aggregator. 

3.2 Commercial Control Testing/Development Platform 
Multi-laboratory platform for development and testing of aggregator-assisted control of PEV charging 

at commercial buildings is displayed in Figure 21.  This platform consist of a MQTT central broker 
described in Section 3.2.1, a DRTS described in Section 3.2.2, and an aggregator described in Section 3.3.  
The building level controls implemented at buildings located at ANL, PNNL, and NREL are each 
described in Section 3.4. 

 
Figure 21. Multi-laboratory platform for development and testing of aggregator-assisted control of PEV 
charging at commercial buildings. 
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3.2.1 GM0085 MQTT Central Broker 
Message Queuing Telemetry Transport (MQTT) is a lightweight message transport protocol in which 

an MQTT broker (server) facilitates messaging between clients. MQTT is becoming the de-facto standard 
for Internet of Things (IoT) communication and is an OASIS standard. MQTT is based on a publish and 
subscribe model in which clients can subscribe or publish to individual topics. MQTT topic structure is 
similar to a personal computer’s directory structure with folders and subfolders. An example topic for the 
GM0085 is: DOE/GM0085/ANL/Setpoint, which is the set point for ANL’s building published by the 
INL aggregator. 

ANL utilizes MQTT in their open-source common integration platform (CIP.io) and sets up secure 
MQTT brokers and MQTT clients. For the GM0085 MQTT central broker, ANL used the open-source 
Mosquitto broker. The broker was hosted on an Amazon EC2 Ubuntu server instance. Each laboratory 
was provided credentials for authorization and access control lists were used to limit read/write access to 
specific GM0085 topics. In addition, all communication was encrypted using TLS v1.2. 

The broker provided sub-second communication latency between INL, ANL, NREL, and PNNL to 
enable interlaboratory communication to perform the GM0085 hardware in the loop research. 

3.2.2 Digital Real-time Simulator 
The IEEE 34 bus distribution system model (see Figure 22) is enhanced to represent the real-time 

PG&E grid characteristics. The original system is 60-Hz, 24.9-kV, and 12-MVA system with various 
fixed and distributed loads. In this enhanced system, the generator is tuned to emulate the PG&E source. 
The building loads from ANL, NREL, and PNNL are modeled as dynamic loads that are controllable. The 
PG&E load is also modeled as dynamic load that is uncontrollable. Figure 22 shows the building loads 
positioned beside each other to observe the maximum impact of these loads on the grid. 

The PG&E load and building loads in the DRTS are fed from the MQTT broker through a GTNET 
socket. The GTNET socket in the DRTS uses User Datagram Protocol (UDP) communication to 
communicate with the MQTT broker. 

 
Figure 22. IEEE 34 bus distribution system model. 

3.3 Building Aggregator 
The aggregator built in this project acts as an intermediary between the utility and commercial 

buildings with BEMSs that locally control PEV charging (see Figure 23). The aggregator communicates 
with each building via the MQTT central broker and coordinates the buildings’ responses across the 
distribution feeder. The aggregator is hosted at INL and contains an optimization routine to mitigate the 
negative grid impact from the building energy demand. At a high level, the communication between the 
aggregator and buildings is as follows: 
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• Three buildings at ANL, NREL, and PNNL, respectively, send the energy limits forecast (forecasted 
minimum energy and maximum energy) in a specified time horizon to the aggregator at INL every 
10 minutes. 

• The aggregator determines the optimal energy request of the next time step for each building using 
the received forecasted energy limits based on the defined optimization routine. 

• Each building responds the aggregator set point based on their locally PEV charging control for every 
10-minute interval. 

 
Figure 23. Communication information flow between buildings and the aggregator. 

Each building forecasted maximum and minimum energies for the next hour broken up by 10-minute 
intervals and the following 5 hours broken down by hours. Each building will publish to these forecasted 
energy limits using MQTT on a 10-minute interval. An energy set point published by the aggregator for 
each building is the allocated energy for each building in the next 10 minutes. 

Suppose in total 𝐵𝐵 buildings are involved into the aggregator control (e.g., 𝐵𝐵 = 3 in this specific 
study). For each building with index 𝑏𝑏 = 1, … ,𝐵𝐵, we have the forecasted energy information at time 
step 𝑖𝑖: minimum energy 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏 [𝑖𝑖] and maximum energy 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏 [𝑖𝑖], where 𝑖𝑖 = 0, … ,𝑁𝑁 − 1. 𝑁𝑁 is the overall 

number of forecasted time steps in the prediction horizon. In the current implemented system, we have 
𝑁𝑁 = 11. When 𝑖𝑖 = 0, … ,5: energy limits information is for a 10-minutes interval in the next first hour. 
When 𝑖𝑖 = 6, … ,10: energy limits information is for one-hour interval in the following 5 hours. 

The decision-making process in the building aggregator is a multi-step optimization routine, which is 
a low computational complexity optimization routine in order to be extendable for future large-scale 
control scenarios. In general, it includes three main modules, energy constraints aggregation, optimization 
routine, and building energy allocation (see Figure 24). Details related to each module are provided in 
Section 3.3.1. 

 
Figure 24. Optimization routine and framework for the aggregator. 

3.3.1 Aggregator Decision-making Modules 
3.3.1.1 Energy Constraints Aggregation 

The energy constraints include both the lower bound and upper bound. The aggregated lower bound 
of energy constraint 𝐸𝐸𝐿𝐿𝐿𝐿

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] at forecasted time step 𝑖𝑖 is the summation of minimum energy requirements 
from buildings. The aggregated upper bound of the energy constraint 𝐸𝐸𝑈𝑈𝑈𝑈

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] at forecasted time step 𝑖𝑖 is 
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the summation of maximum energy requirements from buildings. The mathematical equations are as 
follows: 

𝐸𝐸𝐿𝐿𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] = ∑ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏 [𝑖𝑖]𝐵𝐵
𝑏𝑏=1  (13) 

𝐸𝐸𝑈𝑈𝑈𝑈
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] = ∑ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏 [𝑖𝑖]𝐵𝐵
𝑏𝑏=1  (14) 

3.3.1.2 Optimization Model 
The optimization model aims to mitigate the negative impact on the grid from the building energy 

demand. The specific target or optimization purposes are determined by the objective function 
𝑓𝑓(𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[i]). The objective functions will be defined for different control scenarios. 

𝑚𝑚𝑚𝑚𝑚𝑚  𝑓𝑓(𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖]) (15a) 

𝑠𝑠. 𝑡𝑡.𝐸𝐸𝐿𝐿𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] ≤ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] ≤ 𝐸𝐸𝑈𝑈𝑈𝑈

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖]  (15b) 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[i] + 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛[i] ≤ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   (15c) 

𝑖𝑖 = 0, … ,𝑁𝑁 − 1 (15d) 
In the optimization model, decision variable 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[i] is the overall energy to be allocated at following 

time step 𝑖𝑖 for all involved buildings. 𝐸𝐸𝐿𝐿𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] and 𝐸𝐸𝑈𝑈𝑈𝑈

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] are the aggregated lower bound and upper 
bound for building energy at time step 𝑖𝑖, respectively. 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛[i] is the uncontrollable commercial load on 
the feeder. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the corresponding feeder limit. According to the defined data format in this 
project, the received energy data array from each building has two different time scale. For both the 
forecasted minimum and maximum energy information, first six data points are the energy values during 
10-min time interval, the following five data points are the energy values during 1-hour time interval. In 
order to improve the stability of the optimization process, it may be better to transform the five 1-hour 
data points to the corresponding thirty 10-minute data points by using the average values. This operation 
ensures all decision variables to have in the same scale in the optimization models and achieve a better 
performance of decision making. Therefore, in all we have N=6+5*6=36 decision variables. 

The control target is determined by the selection of objective function in the optimization model. The 
following are two specific examples of optimization objectives for two different targets: 

1. Reduce ramping: 

𝑓𝑓(𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[i]) = � ((𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[i] + 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛[i]) − (𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[i − 1] + 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛[i − 1]))2𝑁𝑁−1
𝑖𝑖=1  (16) 

2. Capacity deferral: 

𝑓𝑓(𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[i]) = � (𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[i] + 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛[i])2𝑁𝑁−1
𝑖𝑖=0  (17) 

The main studied objective in this project focuses on the capacity deferral to reduce the peak load at 
the feeder level. Then the optimization model becomes the following form: 

min  � (𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[i] + 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛[i])2𝑁𝑁−1
𝑖𝑖=0  (18a) 

𝑠𝑠. 𝑡𝑡.𝐸𝐸𝐿𝐿𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] ≤ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[i] ≤ 𝐸𝐸𝑈𝑈𝑈𝑈

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] (18b) 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[i] + 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛[i] ≤ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (18c) 

𝑖𝑖 = 0, … ,𝑁𝑁 − 1                                                                                                                                  (18d) 

In general, this is a quadratic optimization problem. It has the unique optimal solution and has the 
highly efficient algorithm to solve this problem. The solver used in this project is CVXOPT, which is a 
Python-based open source convex optimization toolbox. 
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3.3.1.3 Building Energy Allocation 
By solving the above optimization model for every 10-minute interval, a solution array will be 

obtained, which includes 𝑁𝑁 = 36 values for the proposed energy allocation of every 10-minute interval in 
the following 6 hours. The control process will update this array each 10 minutes; therefore, only the first 
element 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0] in the solution array will be used for energy allocation for each specific building. 

The following algorithm is designed for the energy allocation process: 

Input: Aggregated energy allocation 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0] for all involved buildings 

Output: Energy allocation for each building 𝐸𝐸𝑏𝑏
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0], 𝑏𝑏 = 1, … ,𝐵𝐵 

Step 1: Determine the baseline of energy allocation for each building, which is the minimum 
forecasted energy value 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏 [0] at next time step. 

Step 2: Calculate the energy allocation priority for each building. 

 ∆𝑏𝑏= 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏 [0] − 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏 [0] (19) 

 𝑤𝑤𝑏𝑏 = ∆𝑏𝑏
∑ ∆𝑏𝑏𝐵𝐵
𝑏𝑏=1

�  (20) 

 where 

𝑤𝑤𝑏𝑏 = The priority of building with index 𝑏𝑏. 

 

 For Step 2, he energy allocation priority determines how much energy will be allocated to the 
corresponding building besides the given minimum forecasted energy value. In general, high 
priority will get more energy from the energy budget 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0]− ∑ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏 [0]𝐵𝐵
𝑏𝑏=1 . 

Step 3: Energy to be allocated for building with index 𝑏𝑏 in the next time step 𝐸𝐸𝑏𝑏
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0] is calculated using 

the following equation: 

 
𝐸𝐸𝑏𝑏
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0] = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏 [0] + 𝑤𝑤𝑏𝑏 ∗ (𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0] −� 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏 [0]

𝐵𝐵

𝑏𝑏=1
) (21) 

3.3.2 Implementation Structure 
The building aggregator is implemented using Python programming language on a Windows desktop 

at INL. Figure 25 shows the implemented modules in the aggregator. In general, a MQTT client is 
deployed on the Node-Red platform to receive the forecasted building energy limits and to send the 
building energy set points. A data preprocessing module will process the received energy limits data to 
ensure that they are ready for the optimization modeling. The optimization model construction module 
creates the necessary matrices to build the standard form for the defined optimization problem. Then, this 
model is to be solved using the CVXOPT solver. The obtained solution is the aggregated building energy 
amount. The building energy allocation module assigns the specific energy allocation for each building 
according to the designed algorithm. There is a data logging module in the building aggregator to save the 
historical data for result analysis. The stored data includes all received forecasted building energy limits at 
each time step and all the calculated building energy set points at each time step. 
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Figure 25. Building aggregator implementation modules and framework at INL. 

 

3.4 Building Level Control 
3.4.1 ANL Building Level Control 
3.4.1.1 ANL System Architecture 

The EV-Smart Grid Interoperability Center at ANL is pursuing an open-source approach to monitor 
and control networked devices to minimize barriers to commercial implementation of smart energy 
management. The IoT revolution could have both great business and technological impacts. These 
impacts have caused an influx of research and development in the IoT domain. The IoT does not have a 
one-size-fits-all solution. IoT solutions often require pulling together different device Application 
Programming Interfaces (APIs), abstracting, encapsulating and aggregating data, as well as routing the 
data to the appropriate places in the IoT pipeline with the expectation of providing value (control, 
analytics, etc.). When performing research and development in this space, developers need an IoT 
platform that is capable of rapid development and deployment that makes it easier for developers at all 
levels to create exciting new applications. Fortunately, IoT software developers are providing very 
scalable, extensible applications as open-source allowing other developers to utilize and further develop 
their applications freely. The ANL EV-Smart Grid Interoperability Center decided to leverage these open-
source tools to create an IoT Common Integration Platform called CIP.io (pronounced as “sip-e-o”). 

In any application enablement platform a gateway is needed as an interface between devices and other 
components of the platform. The gateway communication protocol is very important because it must be 
lightweight, extensible, scalable, and standardized. CIP.io utilizes the OASIS MQTT protocol standard. 
MQTT is a machine-to-machine/IoT connectivity protocol. It was designed as an extremely lightweight 
publish/subscribe messaging transport that can reliably scale to provide secure communications for 
billions of devices and trillions of messages. Within the MQTT protocol, a message broker acts as the 
gateway decoupling the many MQTT clients that subscribe and publish to topics on the broker. MQTT 
has strong open-source support. CIP.io leverages Mosquitto, an open-source MQTT broker, that is easy to 
install and configure for secure communication.  

CIP.io is a combination of open-source tools each with a very specific task and purpose. Figure 26 
shows the system architecture of CIP.io. CIP.io utilizes a global MQTT broker on the wide area network 
(WAN) bridged to local MQTT brokers on a local area network (LAN). The ability to bridge MQTT 
brokers allows system administrators to decide what information to keep on the local MQTT broker and 
what information to share to the global WAN MQTT broker. The global WAN MQTT broker is the 
gateway to individual building CIP.io platforms and the outside world. This allows other MQTT clients 
(HIL applications, smart-phone apps, etc.) to interact with the CIP.io platform from the Internet via the 
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standardized MQTT protocol. Other services subscribing to the global WAN MQTT broker include a 
historian database and visualization applications. 

 
Figure 26. CIP.io system architecture. 

A system controller is needed to provide local or global monitoring and control of devices and 
applications. At a local level, a system controller will interface with devices, reading sensors and 
controlling actuators, converting device protocols to MQTT and vice-versa, and interfacing with 
visualization applications and storage databases as shown in Figure 27. At a global level, a system 
controller will interface with other web-based systems to aggregate data from diverse web services. 
CIP.io utilizes IBM’s open-source Node-RED as a system controller. Node-RED is described as the 
“visual tool for wiring the Internet of Things.” Within the Node-RED environment, nodes are wired 
together to create flows, these flows perform a specific task. Node-RED allows browser-based flow 
editing with real-time debugging and deployment options enabling rapid application development. 
Node Red is built on Node.js, taking full advantage of its event-driven, non-blocking model. Node.js' 
package repository, npm, is the largest ecosystem of open-source libraries in the world. CIP.io utilizes the 
Node-Red Freeboard node for data visualization as well as the built-in Node-Red dashboard nodes. 
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Figure 27. Breakout of CIP.io building level architecture. 

Within the design of any IoT platform, security considerations are paramount. Every component and 
interface in CIP.io is a potential attack vector; therefore, well-established and widely accepted security 
mechanisms such as encryption (SSL/TLS), authentication, and authorization have been deployed. For 
example, each Node-RED web user interface (UI) utilizes HTTPS for secure communication and 
authentication. For authentication and authorization, Node-RED users are provided with usernames and 
passwords with the potential for read/write access configuration. Each MQTT broker in CIP.io utilizes an 
SSL/TLS connection with authentication and authorization for each device/user. Access control lists are 
utilized to define what topics each user can publish and subscribe to. Security is always being considered 
and reexamined with continuing efforts focusing on data security, privacy, data integrity, and network 
security. 

3.4.1.2 Building Control Strategy 
The ANL-implemented smart charging control algorithm implements the following priorities: 

1. The demand charge limit for the building is top priority. The V1G smart charging algorithm’s goal is 
to never exceed this limit. However, the algorithm currently does not shut down individual PEVs. 
Therefore, the only case in which the demand charge limit for the building will be exceeded is when 
reducing all PEV charging to their minimum rate results in the building load to exceed the demand 
charge limit. 

2. PEV charging priority is based on instantaneous missing capacity (AC kWh) for each vehicle. The 
algorithm will attempt to meet all PEV energy needs by their departure time within the demand 
charge limit constraints. 
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The control of the ANL algorithm is based upon instantaneous missing capacity (AC kWh). 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑘𝑘𝑘𝑘ℎ) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑘𝑘𝑘𝑘ℎ) − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑘𝑘𝑘𝑘ℎ) (22) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑘𝑘𝑘𝑘ℎ) = 𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑘𝑘𝑘𝑘) ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (ℎ) (23) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑘𝑘𝑘𝑘ℎ) = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑘𝑘𝑘𝑘ℎ) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘𝑘𝑘ℎ)  (24) 

A positive instantaneous missing capacity means that at the instantaneous charge rate (AC kW), the 
PEV will not meet its goal by departure time. Conversely, a negative instantaneous missing capacity 
means that at the instantaneous charge rate (AC kW), the PEV will meet its goal by the departure time. 
Other control strategies can be implemented as long as the same data structures are utilized within the 
flow. 

The algorithm controls each PEV’s charge rate to optimize its charge schedule to ensure the PEV’s 
energy need is met by its departure time, but ultimately defaulting to maintaining the site’s power 
consumption below the site’s limit (AC kW). For every time step, the available PEV charging power is 
calculated and the necessary control is applied to maintain the Smart Energy Plaza’s active power 
underneath the site’s limit. 

If there is a surplus of available PEV charging power, each PEV/EVSE (Electric Vehicle Supply 
Equipment) pair is ranked (maximum to minimum) based on its instantaneous missing capacity (AC 
kWh). The control algorithm then determines how to appropriately increase each PEV in order to 
distribute the available PEV charging power. The current version of the algorithm determines how much 
each PEV can be increased before meeting its individual maximum power limit (minimum of PEV On-
Board Charger Module (OBCM) rating and EVSE ampacity/power). The algorithm then starts with the 
PEV with the highest instantaneous missing capacity and will increase this PEV to its maximum power 
limit if it does not exceed the available PEV charging power and if this PEV’s amperage utility is greater 
than 90%. The PEV’s amperage utility metric provides the algorithm a sense of how well each PEV is 
using the available ampacity. Amperage utility is a ratio of instantaneous current draw of the PEV to the 
AC EVSE ampacity (duty cycle converted to amps). 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

 (25) 

The amperage utility check will not allow a PEV’s power to be increased if it is currently not utilizing 
its current available power, such as when the PEV is topping off towards the end of a charge session. 
Hence, a PEV may have a higher instantaneous missing capacity than another PEV but it will not be 
increased if its amperage utility is not greater than 90%. The algorithm continues increasing each ranked 
PEV to its maximum power until the available power is distributed among the charging PEVs. 

If there is a deficit of available PEV charging power, each PEV/EVSE pair is ranked (minimum to 
maximum) based on its instantaneous missing capacity (AC kWh). The control algorithm then determines 
how to appropriately decrease each PEV in order to curtail PEV charging power below the available PEV 
charging power signal. The algorithm then starts with the PEV with the lowest instantaneous missing 
capacity and will decrease this PEV to its minimum power limit. The algorithm continues decreasing each 
ranked PEV to its minimum power until the PEV charging power is below the available PEV charging 
power signal. 



 

 27 

3.4.2 NREL Building Level Control 
3.4.2.1 NREL System Architecture 

Figure 28 shows the architecture of NREL’s system for the GM0085 Project. Building load is 
generated by a load bank with a pre-programmed load profile and a real-time grid simulator emulates grid 
behavior. The NREL aggregator receives real-time total building load data (controllable and 
uncontrollable building loads) from RTDS. It calculates a building energy profile (Emin and Emax) based 
on a building load forecast and EVSE energy requests from the EVSE user input system, and then 
publishes it to the ANL MQTT broker. Upon receiving a set point value from the INL aggregator, the 
NREL aggregator allocates energy set point values for each controllable load based on their priority and 
controls loads by sending commands to each device through MQTT message publishing. 

 
Figure 28. Architecture of NREL system for GM0085. 

The NREL aggregator uses the load bank building load profile as a building load forecast. However, 
the EVSE load is not included in the profile and the actual building load measured by RTDS is different 
from the forecasted value. The NREL aggregator adjusts the forecast value every 10 minutes based on the 
error between the forecast and the actual load and uses the adjusted forecast value in the calculation of 
Emin and Emax. 

3.4.2.2 Building Control Strategy 
The local building controller adjusts the EVSE load when the total building load reaches a threshold 

value. The adjusted amount of EVSE load is dependent on the requested energy amount and the departure 
time. The controller calculates how much charging power of each station can be reduced when campus 
load reaches a threshold value. The algorithm should guarantee that each station delivers the requested 
energy amount by the departure time with this adjusted charging power. The algorithm calculates a new 
power value for charging as follows: 
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1. Find a list of charging stations k that can provide the requested energy amount by the departure time. 

2. For each k, calculate a new charging value. 

𝑃𝑃𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑦𝑦𝑘𝑘
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑦𝑦𝑘𝑘

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑇𝑇𝑘𝑘
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 (26) 

3. Calculate the total power that is reduced by charging management. 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ �𝑃𝑃𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛�𝑘𝑘  (27) 

Notice that if more stations are on the list, more power reduction is possible by charge management. 
If there is no charging station on the list, there is no power reduction possible by charge management. 

3.4.2.3 Energy Limit Forecast for the Aggregator 
Uncontrollable building load is generated by a load bank with a pre-programmed load profile. The 

load profile is from a real commercial building load. Load by EVSE is the only controllable building load. 
The NREL aggregator receives the total building load (uncontrollable and controllable loads) from RTDS 
and gets EVSE energy requests from the EVSE user input system. With the total building load and the 
EVSE energy requests, it calculates Emin/Emax for the INL aggregator. Emin/Emax data consist of 
11 values. The first six values represent 10-minute interval forecast energies followed by 1-hour interval 
forecast energies. If no cars are connected to charges, the values of Emin and Emax are the same because 
there is no controllable load. 

3.4.3 PNNL Building Level Control 
The PNNL building and PEV charging interface to the GM0085 system consists of five elements (see 

Figure 29). The two elements in the purple boxes enable PNNL to publish building load and PEV 
charging data and subscribe to set point data on the ANL-hosted MQTT broker. The two elements in the 
blue boxes are connections to the GM0062 Project vehicle to building integration system to publish and 
subscribe to data on PNNL’s VOLTTRON system, including PEV charging, PV generation, and building 
data. The remainder of the processes in Figure 29 are functions that enable selecting, formatting, and 
parsing data. 

The ANL-hosted MQTT broker connection (purple box in Figure 29on the bottom left) enabled 
PNNL to subscribe to the INL-published, set point topic. These messages began with 
DOE/GM0085/PNNL/Setpoint and were converted from json to objects using the json module before 
being passed to the “Broker Message Processor” function block. These messages were processed by the 
Broker Message Processor block using its four functions: (1) calculate message latency and echo received 
messages back to transmitter; (2) store MQTT messages in the file Forecast_Messages.txt; (3) display 
communications latency data (~100 milliseconds ANL  PNNL); and (4) read the INL commanded set 
point data. The commanded set point data was used by the GM0062 Project system to prioritize power 
delivery to the vehicles based on their energy requirements, maximum charging rate, and remaining time 
to charge. 

 
Figure 29. PNNL Node-RED interface to the GM0085 control and communications system. 
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The PNNL VOLTTRON input node (top left) enables the PNNL GM0085 Node-RED system to 
subscribe to VOLTTRON data from the PNNL GM0062 Project vehicle to building integration system. 
Node-RED functions are then used to process the PNNL VOLTTRON data. The 
Parse_SEB-Real&Reactive function parses PNNL building real and reactive power data sending one copy 
directly to the MQTT broker and saving the second copy to a file. The saved data is used by a Python 
routine to develop the forecast as described below. The system also processes and stores vehicle charging 
power, building power, and PV power data in text files for post-processing analyses. 

The approach used to forecast energy requirements over the 10-minute, 20-minute, 30-minute, 
40-minute, 50-minute, and 60-minute intervals and 2-hour, 3-hour, 4-hour, 5-hour, and 6-hour intervals 
used a short Python routine designed to maximize energy delivered to charging PEVs during their 
remaining time connected. This forecast routine read stored GM0062 Project data (e.g., remaining energy 
needed, charge time remaining, and maximum charging rate) for each PEV charging to calculate the 
minimum charging energy (Emin) needed over each forecast time interval to deliver the PEV fully 
charged. The maximum charging energy was the sum of the maximum charging rate for all connected 
vehicles. 

The system communication performance was formally tested on December/19, 2018. 

3.5 Commercial Control Strategy Performance 
In the control framework for multiple commercial buildings where PEVs are charging that are 

connected to a distribution feeder, there are two main control entities, the buildings and the feeder, whose 
benefits try to be maximized. Usually, the buildings and the feeder can have their own 
objectives/interests, which are competing with each other. What is best for buildings (e.g., reducing 
building peak load), may not be best for the feeder (e.g., reducing feeder peak load). It is not always 
possible to provide the maximum benefit to the buildings and the feeder at the same time. Therefore, the 
designed control strategies that coordinate building loads need to manage the trade-offs between control 
requirements as follows: 

• Only consider needs of the buildings 

• Balance needs of the buildings and the feeder 

• Only consider needs of the feeder. 

The impact on the distribution feeder of PEV charging controlled by commercial buildings, with and 
without aggregator support, has been studied using the developed testing platform. To quantify the value 
of controlling PEV charging, the following scenarios were studied: 

• PEV charging controlled by the buildings without the aggregator 

• PEV charging controlled by the buildings, coordinated by the aggregator 

• Uncontrolled PEV charging. 

The corresponding results and comparisons related to these scenarios are defined and analyzed in 
Sections 3.5.1, 3.5.2, and 3.5.3. 
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3.5.1 GM0062 Project Control Provides Maximum Benefit at Building Level 
The designed building control strategies in GM0062 Project are to manage peak load at the building 

level. These building control strategies have been studied using the developed testing platform in this 
project. Figure 30 shows the results. The testing time is from 6:00 a.m. to 6:00 p.m. Results include 
scaled building power for the three buildings at ANL, NREL, and PNNL under both uncontrolled and 
building controlled scenarios. The building loads were scaled by using different multipliers (i.e., ANL 
multiplier = 35, NREL multiplier = 35, PNNL multiplier = 7). These multipliers are used to simulate the 
load on a feeder system and make them have the enough impact on the feeder system for the control 
benefits investigation. Results show that GM0062 Project building control shows benefit at the building 
level by managing peak load to minimize demand charges. Building peak load is reduced when PEV 
charging is controlled by BEMSs. 

(a) 
 

(b) 

 
(c)  

 
Figure 30. Scaled building power profile for the three buildings at (a) ANL, (b) NREL, and (c) PNNL 
under the uncontrolled and building controlled scenarios. 
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3.5.2 GM0062 Project Control Provides Less Benefit at Feeder Level 
Based on the scaled power profiles for the three buildings at ANL, NREL, and PNNL, the aggregated 

power profiles for the buildings are shown in Figure 31 for both uncontrolled and building controlled 
scenarios. The aggregated power profile at the feeder level shows that the peak load at the feeder level 
under the building control is not reduced comparing with the scenario when PEV charging is 
uncontrolled. This is because GM0062 Project control maximizes benefit at the building level. Peak 
feeder loads are about the same in uncontrolled and building controlled scenarios because building peaks 
are not coincident (see Figure 31(a) and Figure 31(b)). 

(a) (b) 

(c) 

 
Figure 31. Power load profiles for the three buildings at ANL, NREL, and PNNL. (a) power load profile 
under the uncontrolled scenario; (b) power load profile under the building controlled scenario; 
(c) aggregated power load of at the feeder level under the uncontrolled and building controlled scenarios. 

3.5.3 Aggregator-assisted Control Performance 
Multiple tests performed in this project demonstrate that the platform developed for 

aggregator-assisted control is functional and operated successfully. Two scenarios were tested in this 
project. In both scenarios, the platform was able to share real-time data securely and reliably between 
INL, ANL, NREL, and PNNL. 

Figure 32 shows the results of the feeder power profiles of uncontrolled, building controlled and 
aggregator-assisted controlled scenarios for two different days. Results show that, unfortunately, peak 
feeder load is about the same in the uncontrolled and aggregator-assisted scenarios.  
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Figure 32. Comparisons between uncontrolled, building controlled, and aggregator-assisted controlled 
scenarios in two different days. 

Figure 33 shows the results of voltage deviations at the feeder level for the three buildings and the 
three different scenarios. Voltage deviations are about the same in the uncontrolled, building controlled, 
and aggregator-assisted controlled scenarios for the three buildings. This is because the building control 
and aggregator-assisted control were designed to provide peak load reduction not voltage regulation. 
However, the obtained results show that the developed testing platform is capable to perform the grid 
impact studies from a different perspective. This means the developed platform is useful for future grid 
impact studies when other objectives are going to be investigated. 

(a) (b) 

 
(c) 

 
Figure 33. Voltage deviations for the three buildings at (a) ANL, (b) NREL, and (c) PNNL at the feeder 
system under uncontrolled, building controlled, and aggregator-assisted controlled scenarios. 
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3.6 System Design Analysis and Future Work 
3.6.1 Aggregator-assisted Control System Diagram 

Figure 34 shows the system diagram of the aggregator-assisted control framework. The aggregator 
receives the energy limits forecast from the buildings. The energy limits forecast is maximum and 
minimum building energy forecast for the next 6 hours in current designed system. These limits forecast 
is based on the PEV state forecast and PEV charging assumptions shown in Figure 34. Each building has 
its own energy limits forecast for the next 6 hours based on specific PEV charging assumptions in the 
three buildings at ANL, NREL, and PNNL. Detailed format of energy limits forecast is discussed in 
Section 3.3. 

 
Figure 34. Aggregator-assisted control framework. 

The aggregator creates the building energy requests by performing the feeder load optimization 
according to a specific objective (e.g., feeder peak load). The generated building energy requests are sent 
to building load management systems. In the current system design, the aggregator always returned each 
building to its minimum limit for the next time step, as shown in Figure 35 for the energy request of 
ANL’s building. Due to the target of capacity deferral, the objective function of reducing peak load was 
modeled as a quadratic function. Minimizing the quadratic objective function forces the building energy 
request to be as small as possible within the feasible energy boundaries. 

(a) (b) 

 
(c) 

Figure 35. Energy limits forecast for (a) ANL, (b) NREL, and (c) PNNL, with a prediction horizon of 
time range 12:10-12:20 Mountain Time. 
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As discussed in previous result analysis, aggregator-assisted control cannot provide benefits on peak 
reduction based on the current system design structure. The building energy limits forecast algorithm and 
buildings aggregator algorithm were developed independently at the component level. The building 
energy limits forecast was defined first and everything was built around it. The proper functionality of 
optimization in the aggregator is determined by meaningful limits/bounds. When buildings create the 
energy limit forecast, implicitly required assumptions about PEV charging to be made at the building 
level. The building forecast depends on an assumption of how the vehicles will be charged during the 
prediction horizon. This forced a solution at the building level, defeating the purpose of the aggregator. 
The aggregator needs the bounds of charging flexibility not bounds based on an arbitrary charging 
assumption. Therefore, algorithms should be designed at the system level not the component level. 
Figure 36 shows a demonstration of energy limits (Emin and Emax) and energy set points for ANL. 

 
Figure 36. Demonstration of energy limits (Emin and Emax) and energy set points for ANL from 6:00 to 
18:00 (6:00 a.m. to 6:00 p.m.). 

 

3.6.2 Future Work 
Due to the competing interests between the buildings and feeder, a trade-off must be made when 

conducting the aggregator-assisted control to coordinate the PEV charging in multiple buildings. 
Figure 37 shows a potential control framework that can be used to improve performance of 
aggregator-assisted control in future research work. As shown in Figure 37, the framework includes steps 
to: 

1. Prioritize and value building needs and feeder needs 

2. Divide charging flexibility between building needs and feeder needs according to priorities 

3. Send to the aggregator the bounds of charging flexibility allocated to meet feeder needs 

4. Maximize feeder benefits within the bounds of charging flexibility 

5. Send optimal energy request to the buildings. 

Among these steps, key operations are to prioritize and value the needs between buildings and the 
feeder, then divide the corresponding charging flexibility. The bonds of charging flexibility will be 
meaningful information for the aggregator to optimize its decisions, which will try to provide the most 
benefits at the feeder level by using the allowed charging flexibility from the building level. 
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Figure 37. Potential control framework to improve performance of aggregator-assisted control. 
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Appendix A 
 

Projection of Electric Vehicle Stocks in California 
A-1. METHODOLOGY AND RESULTS 

To develop our forecast of EV penetration in California, we began with historical data on 
California EV sales (sum of battery, plug-in hybrid and fuel cell EVs) from January 2011 through August 
2018 from Auto Alliance [A-1], with additional data from Veloz [A-2]. These data were fit to an 
exponential function with the following functional form: 

 
Annual sales = exp( A * Year + B ) 

 
The optimal fits of the coefficients for this equation are shown in Table A1. 
 

Coefficient Value Standard Deviation 
A 0.3875 0.0547 
B -769.9 110.2 

Table A1. Optimal fit coefficients for California EV sales data. Sources: [A-1] and [A-2] 
 

Extending this fit through 2030 results in an unrealistically large number of vehicle sales that far 
exceeds total annual vehicle sales (2.0 million in 2016, as derived from [A-1]). To address this issue, a 
sigmoidal function was developed to “bend over” the exponential curve in outlying years to reach a total 
EV stock of 6.7 M vehicles in 2030, which is consistent with the high end of statewide EV penetration 
estimates from Southern California Edison [A-3]. (By comparison, the state’s own goal is 5 M vehicles 
[A-4].) This sigmoidal function multiplies the projected exponential fit of future vehicle sales by a 
reduction factor that tapers from 76.4% in 2019 to 4.2% in 2030, using the following functional form: 
 
Reduction factor = 1 – 1/[1 + 1/exp( C • Year + D )] 
 

The coefficients for this equation are shown in Table A2, which were obtained by forcing the 
sigmoidal function to have a value of 50% in 2022 and 10% in 2027.6. 
 

Coefficient Value 
C 0.3924 
D -793.4 

Table A2. Coefficients of EV sales sigmoidal function. 
 

In order to calculate EV stock from EV sales, a vehicle survival function was used from Bento et 
al. [A-5] with the following function of model year m and age a : 
 
Vehicles ( m , a ) = Vehicles ( m , a – 1) • {1 – 1/[ E + F • exp( G • a )]} 
 
Where Vehicles ( m , 0) are the number of vehicles sold initially. The coefficients for this equation 
are shown in Table A3. 
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Coefficient Value 
E 2.724 
F 314.03 
G -0.275 

Table A3. Coefficients of passenger car survival function. Source: [A-5] 
 

The stock model was initiated for model year 2011 and provided with historical EV sales data for 
2011 through 2018 (Auto Alliance data through August 2018 were projected through the end of 2018). 
Because sales grow so rapidly, particularly in the early years, the effect of using a vehicle survival 
function is modest; if instead all vehicles sold are assumed to last indefinitely, the projected vehicle stock 
in 2030 would be only 8% larger. 
 

To obtain the final result of vehicles per household, we used the California Energy Commission 
forecast of California households through 2030 [A-6] to divide vehicle stocks by number of households. 
The resulting EV penetrations obtained were 3.9% in 2018, 7.2% in 2020, 23.8% in 2025 and 45.3% in 
2030. 
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