Lessons Learned about Workplace Charging in The EV Project

John Smart – Principal Investigator
Idaho National Laboratory

2015 Annual Merit Review
Washington, DC
June 9, 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Start: Oct 1, 2013
- End: Jun 30, 2015
- 90% complete

Budget
- FY14: $50k
- FY15: $10k

(project highly leverages DOE funding to INL for EV Project and ChargePoint America data analysis)

Barriers Addressed
- Infrastructure
 - For consumers to accept, purchase, and use plug-in electric vehicles, the proper infrastructure must be in place to enable the full utilization of the technology with minimal impact to the usage habits of the consumer.

Partners
- Nissan North America
- General Motors/OnStar
- Blink Network
- ChargePoint
Relevance

• Proponents of plug-in electric vehicles are constantly challenged that public charging infrastructure is needed to support wide-spread PEV market adoption

• Workplace charging has been proposed as a promising option to meet this presumed need

• The purpose of this project is to demonstrate the usefulness and benefits of workplace charging to plug-in electric vehicles (PEV) owners by studying the charging and driving behavior of PEV drivers with access to workplace charging

• The study focused on the following questions:
 – Where do PEV drivers charge when they have the opportunity to charge at work?
 – How is workplace charging equipment used?
 – Does workplace charging affect electric vehicle miles traveled?
 – What guidelines for effective implementation can be crafted based on case studies of organizations with workplace charging?
Milestones

Phase I – Workplace Charging Case Studies

<table>
<thead>
<tr>
<th>Task</th>
<th>Target completion date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify worksites to study, based on vehicle and EVSE data availability</td>
<td>11/9/2013</td>
<td>Complete</td>
</tr>
<tr>
<td>2. Gather easily obtainable background information about worksites</td>
<td>11/29/2013</td>
<td>Suspended for entire data set; on-going for selected sites (see Phase II)</td>
</tr>
<tr>
<td>a. Number of EVSE, usage fee (fee vs. free), charge power level, time period of EVSE installation, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Choose time period that study will examine</td>
<td>11/29/2013</td>
<td>Complete</td>
</tr>
<tr>
<td>4. Publish white paper on how much Leaf and Volt drivers charge at work, home, and other locations</td>
<td>3/28/2014</td>
<td>Complete</td>
</tr>
<tr>
<td>5. Publish white paper on how workplace charging is being used</td>
<td>8/21/2014</td>
<td>Complete</td>
</tr>
<tr>
<td>a. Utilization from EVSE data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Driving and charging behavior of Leafs and Volts with access to workplace charging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Publish white paper on electricity demand at work site(s) with many EVSE, impact on demand charges, and potential ways to mitigate demand charges</td>
<td>8/29/2014</td>
<td>Delayed in order to complete phase II</td>
</tr>
</tbody>
</table>
Milestones

- Phase II – Develop rules of thumb as inputs to tool to guide employers’ infrastructure deployment decisions

<table>
<thead>
<tr>
<th>Task</th>
<th>Target completion date</th>
<th>Status</th>
</tr>
</thead>
</table>
| 1. Characterize worksites studied above into scenario groups based on factors that heavily influence observed behavior:
 a. Free vs. fee
 b. Other policy distinctions (public access vs. employee-only access, etc.)
 1. May require communication with employers (???)
 c. Utilization
 d. Vehicle mix
 e. Those with/without drivers who charge at home | 3/28/2014 | Complete |
| **Go/no go decision** – is there enough empirical data (EV Project) in a broad enough range of scenarios to compare to survey results? | 3/28/2014 | No go – insufficient data |
| 2. Determine if/how we can fit survey responses to worksite data
 a. Ex: if the survey response to question 1 is “a” and question 2 is “b”, then we can use behavior observed at worksites A and D as a guide to what they might expect.
 b. Update employee survey if necessary
 c. Create employer survey to understand employer objectives and desired outcomes | 6/30/2014 | Canceled |
| 3. Decide how to address scenarios that exist (per survey results) but are not represented in empirical data | 7/31/2014 | Canceled |
| 4. Deliver report with rules of thumb and recommendations on methodology for interpreting survey results to inform infrastructure deployment decisions | 8/29/2014 | Canceled |
Milestones

- Phase II (revised) – Develop a lessons-learned document to guide employers’ infrastructure deployment decisions

<table>
<thead>
<tr>
<th>Task</th>
<th>Target completion date</th>
<th>Status</th>
</tr>
</thead>
</table>
| Gather information to characterize selected worksites into groups based on factors that heavily influence behavior, including:
 a. Free vs. fee
 b. Public access vs. employee-only access
 c. Vehicle mix
 d. Those with/without drivers who charge at home | 6/30/2014 | Complete |
| Perform case studies on selected groups with reliable information about work site | 7/31/2014 | Complete |
| Deliver lessons-learned report on considerations guiding the management and use of workplace charging infrastructure | 8/29/2014 | Complete |
Milestones

Phase III – produce easily digestible summary report of key take-aways

• Completion date: June 30, 2015
• Status: in progress
Approach

- This study was performed by analyzing driving and charging data collected in DOE-funded national PEV infrastructure demonstrations.

- 250 work sites identified with workplace charging available across the US.

- Data collected from 600+ Nissan Leafs and ~100 Chevrolet Volts in The EV Project who parked at these sites in 2012 – 2013.

- Case study of large work site with AC Level 1, AC Level 2, and DC Fast Charging Units (Facebook).

- Data collected from charging units at 6 worksites highlighted in case study by CA PEV Collaborative\(^1\).

Where did PEV drivers with access to workplace charging choose to charge?

Nissan Leafs

Overall Charging Frequency by Location (to scale)

- Home - 65%
- Work - 32%
- Other - 3%

On work days, 98% of charging events was either at home or work and only 2% at other locations.

Charging at work was free for many of these drivers, which may have been one reason why they frequently charged there.

707 vehicles, Jan 2012 – Dec 2013
Where did PEV drivers with access to workplace charging choose to charge?

Chevrolet Volts

Overall Charging Frequency by Location (to scale)

- Home - 57%
- Work - 39%
- Other - 4%

Percent of Charging Events by Location and Day

- Workdays:
 - Other: 2%
 - Work: 50%
 - Home: 48%

- Non-workdays:
 - Other: 11%
 - Work: 89%

On work days, 98% of charging events was either at home or work and only 2% at other locations.

Charging at work was free for many of these drivers, which may have been one reason why they frequently charged there.

96 vehicles, Jan 2013 – Dec 2013
How much did PEV drivers charge at work vs. home?

- 14% of Leafs studied needed to charge at work in order to complete their daily commute on most days
- On these days, they charged at home and topped off at work as expected
Leaf drivers who did not need workplace charging on most days had varying behavior.

- Fully charged at home and topped off at work on most days (35%)
- Partially charged at home and topped off at work on most days (29%)
- Only charged at work on most days (29%)
- Mixed (17%)

How much did PEV drivers charge at work vs. home?
How many drivers needed to charge at work to complete their commutes?

- Assumption: if you need it, you need it; if you don’t, you don’t
- 14% of vehicles needed workplace charging to complete their daily driving on most days, but...
- 43% of vehicles needed workplace charging to complete their daily driving on some days

Percent of vehicles needing to charge at work on at least 50% of days
- 14%
- 86%

Percent of vehicles needing to charge at work on at least 5% of days
- 43%
- 57%
Does workplace charging increase electric vehicle miles traveled?

Yes!

• On days when Leaf drivers needed to charge at work, workplace charging extended their range by an average of 15 miles (21%)
• Round-trip commutes on these days averaged 73 miles
• On days when drivers did not need workplace charging but charged anyway, they averaged 12% more miles than on days when they did not charge at work.
How often did drivers charge at work?

• Assumption: if they can charge at work, they will
• A study of Leaf and Volt parking and charging at 6 work sites showed dramatic differences from site to site…
How often did drivers charge at work?

• … and from vehicle to vehicle at the same site
What determines whether drivers will charge at work?

- Correlation to commute distance only on high end
- Some correlation to free/cost
- Ratio of vehicles to charging units, policy for use, and other factors also matter also

From 47 Leafs, 5 Volts at 6 worksites
What determines whether drivers will charge at work?

Summary of Factors Influencing Workplace Charging Frequency

<table>
<thead>
<tr>
<th>Round-trip Commute Distance (mi)</th>
<th>% Days Not Charged</th>
<th>% Days Charged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost</th>
<th>Free</th>
<th>Cost per kWh</th>
<th>Free</th>
<th>Free</th>
<th>Cost per hour</th>
<th>Cost per kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Online reservation system</td>
<td>None</td>
<td>Move after charged (unenforced)</td>
<td>Move after charged (unenforced)</td>
<td>Move after charged (enforced)</td>
<td>None</td>
</tr>
<tr>
<td>PEV/EVSE Ratio</td>
<td>4.6</td>
<td>2.6</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Responses to Previous Year Reviewers’ Comments

• This project started in FY14
Collaboration and Coordination with Other Institutions

Data collection partner providing data from Blink residential and commercial AC Level 2 charging units and DC fast chargers

Data collection partner providing data from ChargePoint residential and commercial AC Level 2 charging units

Data collection partners providing data from Chevrolet Volts enrolled in The EV Project

Data collection partner providing data from Nissan Leafs enrolled in The EV Project

Participant in The EV Project and ChargePoint America; provided qualitative information about use of charging equipment at its offices

* Vehicle and charging unit owners gave written permission for data to be collected and provided to researchers
Remaining Challenges and Barriers

• All data necessary to complete the remaining reports in this project have been collected and analyzed

• There are no anticipated barriers to completing these works by the end of the project

• One challenge is to distill the conclusions of this project’s studies into easily digestible points that provide useful guidelines to organizations considering installing workplace charging. Care must be taken not to overstate the applicability of the results, in light of the limitations of the studies with respect to the following:
 – Samples were not representative of the overall PEV market
 – Only two PEV makes/models were studied included
 – Only early adopters studied
Proposed Future Work

• From Phase I, one additional paper on electricity demand from workplace charging will be completed

• The summary report of key take-aways for Phase III will be completed for use by DOE Workplace Charging Challenge staff

• The author recommends that DOE fund additional workplace charging studies to understand how the use and value of workplace charging changes as the PEV market evolves
Summary

• Workplace charging has been proposed as an important part of the charging infrastructure necessary to support PEV adoption

• Using data collected from large PEV infrastructure demonstrations, the charging and driving behavior of >700 PEV drivers with access to workplace charging was analyzed to understand how they used workplace charging. Case studies on the use of charging stations at individual work sites were also performed.

• Workplace charging infrastructure was highly used
 – Leaf and Volt drivers performed nearly all charging at home and work on work days and only slightly less on non-workdays

• Workplace charging enabled range extension for Leaf drivers
 – 14% of Leaf drivers needed to charge at work to complete their daily commutes on most days. 43% of vehicles needed workplace charging to complete their daily driving on some days
 – On days when Leaf drivers needed to charge at work, workplace charging extended their range by an average of 15 miles (21%)

• Use of workplace charging varied based on many factors, including commuting distance, the cost to charge at work, the ratio of vehicles to charging units, and policies for use
TECHNICAL BACK-UP SLIDES
INL was a primary partner in two national electric vehicle (EV) charging infrastructure demonstrations

The EV Project
- Purpose is to build mature EV charging infrastructure in 17 US regions and study:
 - Infrastructure deployment process
 - Customer driving and charging behavior
 - Impact on electric grid
 - 12,000+ AC level 2 charging units, 100+ DC fast chargers
 - 8,000+ Electric drive vehicles
 - INL data collection Jan 2011 – Dec 2013
- Project partners:

ChargePoint America
- Deploy 4,700+ residential and public AC level 2 charging units in 11 US regions
- Study customer usage of residential and public infrastructure
- INL data collection May 2011 – Dec 2013
Charging Units Reporting Data Nationally

- 107 DC Fast Charge
- 443 Private Nonresidential AC Level 2
- 3,555 Publicly Accessible AC Level 2
- 8,251 Residential AC Level 2
- 12,356 Total
Infrastructure Deployment in ChargePoint America through December 2013

Charging Units* Reporting Data Nationally
- 39 Not specified
- 264 Private Nonresidential
- 2,508 Publicly Accessible
- 1,836 Residential
- 4,647 Total

* All units are AC Level 2
Dual-port units count as 2 units

Legend:
- Not Specified
- Private Nonresidential
- Residential
- Publicly Accessible
Geographic Distribution of Vehicles

- Number of EV Project Nissan Leafs with access to workplace charging by area
Percent of Charging Events by Location, Power Level, and Time of Day

Oct 2012 – Dec 2013

4,038 Leafs

1,867 Volts

Home Overnight L1 or L2: 84%
Home Daytime L1 or L2: 16%
Away Overnight L1 or L2: 87%
Away Overnight DCFC*: 13%
Away Daytime L1 or L2: <<1% of all charge events
Away Daytime DCFC: <<1% of all charge events

*<<1% of all charge events

Home Overnight: 87%
Home Daytime: 13%
Away Overnight*: 87%
Away Daytime: 13%
REVIEWER-ONLY SLIDES
Publications and Presentations

Papers

• “Where do Nissan Leaf drivers in The EV Project charge when they have the opportunity to charge at work?” INL/EXT-14-31486, March 2014
• “Where do Chevrolet Volt Leaf drivers in The EV Project charge when they have the opportunity to charge at work?” INL/EXT-14-31487, March 2014
• “Workplace Charging Case Study: Charging Station Utilization at a Work Site with AC Level 1, AC Level 2, and DC Fast Charging Units,” INL/EXT-14-32340, June 2014
• “Workplace Charging Frequency of Nissan Leafs and Chevrolet Volts in The EV Project at Six Work Sites,” INL/EXT-14-33701, November 2014
• “Charging and Driving Behavior of Nissan Leaf Drivers in The EV Project with Access to Workplace Charging,” INL/EXT-14-33700, November 2014

Presentations

• Smart, J., “PEV Infrastructure Deployment Costs and Drivers’ Charging Preferences in The EV Project,” SAE 2014 Hybrid and Electric Vehicle Technologies Symposium, La Jolla, CA, February 11, 2014
• Smart, J., White, S., “Electric Vehicle Charging Infrastructure Usage Observed in Large-scale Charging Infrastructure Demonstrations,” National Academy of Sciences Committee on Overcoming Barriers to EV Deployment Open-session Meeting, Irvine, CA, February 25, 2014
• Smart, J., “Workplace Lessons Learned through the Nation's Largest PEV Charging Projects,” DOE Workplace Charging Challenge Summit, Alexandria, VA, November 18, 2014
Critical Assumptions and Issues

• Sample sizes were small and not statistically representative of the entire population of PEV owners with access to workplace charging. Nevertheless, the assumption was made that behavior was “typical enough” of early adopters to warrant the study of behavior.

• Behavior observed will likely not be representative of drivers of PEVs with much larger (e.g. Tesla S) or much small (e.g. Prius PHEV) batteries. However, the majority of PEVs currently in the US market are the two vehicles studies, and therefore, the study is relevant.

• The cost (free or not free) to charge at most of the 250 work sites identified was not known. Based on the case studies of six work sites where cost was known, we understand that cost affects a driver’s decision to charge. It was assumed that the mix of fee/not-free work sites was representative of the early market, and the lack of information did not significantly skew the analysis.