Vehicle Mass Impact on Vehicle Losses and Fuel Economy

PI: Jim Francfort
Presenter: Richard “Barney” Carlson
Energy Storage & Transportation Systems
Idaho National Laboratory
Advanced Vehicle Testing Activity (AVTA)

May 16, 2012

2012 DOE Vehicle Technologies Program Annual Merit Review
INL/MIS-12-24885

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- **FY11** – Project planning, Vehicle procurement, test plan preparation
- **FY12** – Vehicle coastdown testing and data analysis; Vehicle dynamometer fuel economy and energy consumption testing and data analysis

Barriers
- A change in vehicle mass changes the energy consumption; Is this change the same for all vehicle technologies?
- Difficult to isolate mass impact from other factors (aerodynamic change from ride height change, vehicle fuel economy repeatability, etc)
- Maintaining environmental conditions repeatability during coastdown testing

Budget
- **FY11** – $125,000
- **FY12** – $225,000

Partners
- Idaho National Lab - lead
- ECOtality North America – coastdown testing
- Argonne National Lab – dynamometer testing
Objective / Relevance

• Determine for BEV, HEV and ICE the Impact of Vehicle Mass on:
 – Vehicle drag forces
 – Vehicle fuel economy or energy consumption (MPG and Wh/mi)
• Technology dependence of Mass Impact (HEV to ICE to BEV)
 – i.e. is mass reduction more beneficial for certain technologies?
• Share results of study with DOE, Tech Teams, OEMs, etc.
Approach

• Three vehicle tested (BEV, HEV, and ICE)
 – Nissan Leaf
 – Ford Fusion Hybrid
 – Ford Fusion V6

• Multiple test weights tested for each vehicle
 – Increase and decrease from stock weight (EPA certification weight)

• On test track, coastdown testing is conducted to determine the impact of mass change on vehicle drag forces

• Road load coefficients determined from coastdown testing are used to configure the chassis dynamometer

• Chassis dynamometer testing is conducted over standardized drive cycles to determine the impact of mass change on vehicle fuel economy and energy consumption (MPG and Wh/mi)
Approach - Coastdown Testing (ECOtality)

- For each vehicle, at each test weight
 - 14 coastdowns conducted to reduce sensitivity to external variables
 - 7 in each direction to nullify any track grade variability
 - Wind, ambient temp, and humidity limits strictly adhered to
- To reduce testing variability
 - Vehicle warmed up for 30 min. prior to testing
 - Ride height is held to a small tolerance at the various vehicle test weights
 - Temperatures monitored and recorded to ensure vehicle is functioning at steady state operating conditions
 - Transmission fluid temperature
 - Tire side wall temperature (non-contact temperature sensor)

<table>
<thead>
<tr>
<th></th>
<th>Fusion ICE (V6)</th>
<th>Fusion HEV</th>
<th>Leaf BEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>+500 lbs</td>
<td>4250</td>
<td>4500</td>
<td>4250</td>
</tr>
<tr>
<td>+250 lbs</td>
<td>4000</td>
<td>4250</td>
<td>4000</td>
</tr>
<tr>
<td>EPA cert. weight</td>
<td>3750</td>
<td>4000</td>
<td>3750</td>
</tr>
<tr>
<td>-100 lbs</td>
<td>3650</td>
<td>3900</td>
<td>3650</td>
</tr>
<tr>
<td>-250 lbs</td>
<td>3500</td>
<td>3750</td>
<td>3500</td>
</tr>
</tbody>
</table>

- Consistency between coastdown and dynamometer testing
 - Same vehicle operating mode utilized
 - Same three vehicles are used for all testing
Approach - Chassis Dynamometer Testing (Argonne)

- For each vehicle, at each test weight
 - Standardized drive cycles used for dynamometer testing
 - UDDS
 - HWFET
 - US06
- To reduce testing variability
 - Vehicle warmed up per dynamometer test procedures prior to testing
 - Same dynamometer driver for all tests
 - Temperatures monitored and recorded to ensure vehicle is functioning at same steady state operating conditions as on test track
 - Transmission fluid temperature
 - Tire side wall temperature (non-contact temperature sensor)
 - Consistency between coastdown and dynamometer testing
 - Same vehicle operating mode utilized
 - Same three vehicles are used for all testing

<table>
<thead>
<tr>
<th></th>
<th>Fusion ICE (V6)</th>
<th>Fusion HEV</th>
<th>Leaf BEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>+500 lbs</td>
<td>4250</td>
<td>4500</td>
<td>4250</td>
</tr>
<tr>
<td>EPA cert. weight</td>
<td>3750</td>
<td>4000</td>
<td>3750</td>
</tr>
<tr>
<td>-250 lbs</td>
<td>3500</td>
<td>3750</td>
<td>3500</td>
</tr>
<tr>
<td>-500 lbs</td>
<td>3250</td>
<td>3500</td>
<td>3250</td>
</tr>
</tbody>
</table>
Milestones

• Aug 2011 – Project planning and test plan complete
• Nov 2011 – Vehicles acquired and break-in miles accumulated
• Jan 2012 – Coastdown testing complete
• Feb 2012 – Analysis of coastdown data complete

• April / May 2012 – Dynamometer testing in progress
Technical Accomplishments

- A change in vehicle mass has shown a change in low speed rolling drag but less significant change in high speed drag forces.
Technical Accomplishments (continued)

- The mass impact on vehicle drag appears to be independent of vehicle powertrain technology

- The change in vehicle drag shows a slightly non-linear trend
Technical Accomplishments (continued)

- The mass impact of the Nissan LEAF on Energy Consumption
 - Decreased Energy Consumption over UDDS and US06 cycle for decreased mass
 - 1000 lbs decrease \rightarrow 15 to 20 DC Wh/mi decrease
 - Negligible change in Energy Consumption over HWFET cycle
Technical Accomplishments (continued)

- The mass impact of the Ford Fusion Hybrid fuel consumption
 - Decreased fuel consumption over UDDS and US06 cycle for decreased mass
 - 1000 lbs decrease → 0.3 to 0.5 L/100km decrease
 - Negligible change in Energy Consumption over HWFET cycle
Collaboration

- Results from testing will be shared with US DOE, Tech Teams, OEMs, and others in support of improving petroleum displacement technologies

Future Work

- Dynamometer testing at multiple vehicle test weights to determine Fuel Economy and Energy Consumption
 - Nissan Leaf (completed)
 - Ford Fusion Hybrid (completed)
 - Ford Fusion V6 (in process)
- Analysis of dynamometer testing results
- Report and present on results and findings
- Possibly investigate mass impact on other vehicle technologies
 - PHEV
 - Advanced diesel
 - Downsized gasoline engine with turbocharger
 - Advanced transmissions (CVT or Dual Clutch)
Summary

- Determination of vehicle mass impact on vehicle drag losses is complete
 - Coastdown testing is complete
 - Analysis of coastdown testing data is complete
- Determination of vehicle mass impact on vehicle fuel economy and energy consumption is in progress
 - Chassis dynamometer testing (Argonne National Lab)

- Provide results from Mass Impact on
 - Vehicle Drag Losses
 - A slightly non linear trend of decreasing vehicle mass results in decreased vehicle drag
 - Shows no dependency on powertrain technology
 - Vehicle Fuel Economy or Energy Consumption
 - Results will be provided after testing and analysis are completed