Idaho National Laboratory

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program

Advanced Vehicle Testing Activity

Real-World Research and Testing: Producing and Using Hydrogen in Transportation

HydroVision 2006 – The Hydrogen Economy Portland, Oregon Jim Francfort

INL/CON-06-11577

Presentation Outline

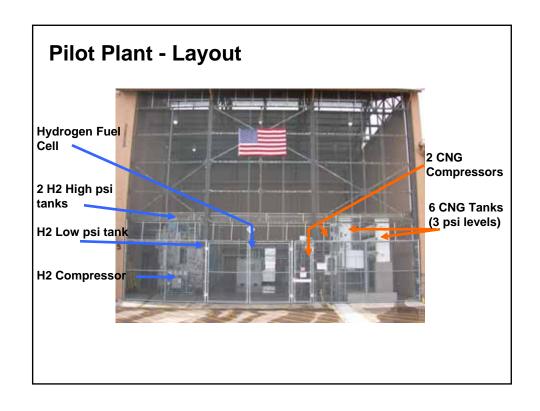
- Background & Goal
- Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design & operations
 - Hydrogen subsystem
 - CNG subsystem
 - Safety system
- Fuel Dispensing
- Hydrogen & HCNG Internal Combustion Engine (ICE)
 Vehicle Testing Activities
- WWW Information

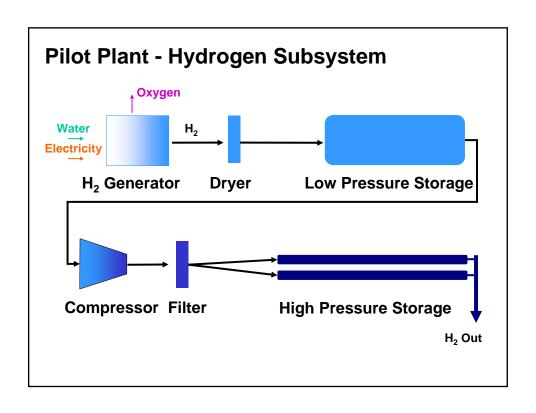
AVTA Background & Goal

- Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy's (DOE) FreedomCAR and Vehicle Technologies Program
- These activities are conducted by the Idaho National Laboratory (INL) & the AVTA testing partner Electric Transportation Applications (ETA)
- AVTA Goal Provide benchmark data for technology modeling, research & development programs, as well as help fleet managers & other vehicle purchasers make informed purchase & operations decisions

AVTA Testing History

- Full-size pure EVs (40 models, 5 million test miles)
- Neighborhood EVs (15 models)
- Urban EVs (3 models, 1.75 million test miles)
- Hybrid EVs (11 models, 32 HEVs, 2 million miles)
- Hydrogen ICE vehicles (several models, 300k miles)
- Oil bypass filter testing (17 vehicles, 1.3 million miles)
- Dynamometer, track & fleet testing


APS Alternative Fuel (Hydrogen) Pilot Plant

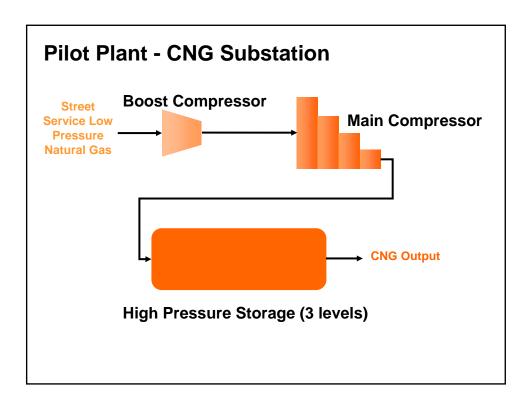

- Partners Arizona Public Service (APS), ETA, INL, & DOE
- First & longest operating hydrogen station in the U.S. – since June 2002
- Hydrogen produced onsite
- Hydrogen & CNG fueling

Pilot Plant & Hydrogen ICE Vehicle Testing Objectives

- Evaluate the safety & reliability of operating ICE vehicles on 100% hydrogen & hydrogen/compressed natural gas (HCNG) blended fuels (15 to 50% HCNG)
- Evaluate hydrogen fueling infrastructure operations & costs
- Quantify hydrogen & HCNG ICE vehicle costs, performance & emissions

Pilot Plant - Hydrogen Subsystem

- Proton Energy Systems' HOGEN PEM stationary fuel cell operating in reverse
 - 300 scfh hydrogen output @ 150 psi
 - 17 kWh per 100 scf hydrogen
- Hydrogen Lectrodryer
 - -80°F dew point
- Pressure Dynamic Consultants (Pdc Machines)
 - 300 scfh @ 6,100 psi
- 8 Norman hydrogen filter locations
- Hydrogen 99.9997% purity



Pilot Plant - Hydrogen Storage

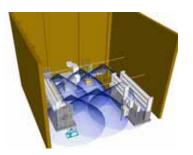
- Low pressure hydrogen storage (lower tank) -8,955 SCF @ 150 psi
- High pressure hydrogen storage (upper 2 tanks) -17,386 SCF @ 6,000 psi (total both tanks)

Pilot Plant - CNG System

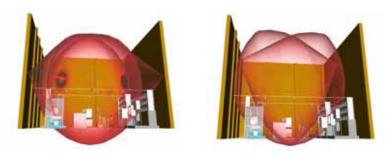
- CNG Boost Compressor
 - 300 scfm @ 60 psi
- CNG Main Compressor
 - 350 scfm @ 5,000 psi
- CNG Storage/Pressure 6 tanks
 - 3 Low: 11,079 scf @ 3,600 psi
 - 2 Medium: 5,711 scf @ 4,500 psi
 - 1 High: 5,711 scf @ 5,000 psi
 - Manufacturer: CP Industries

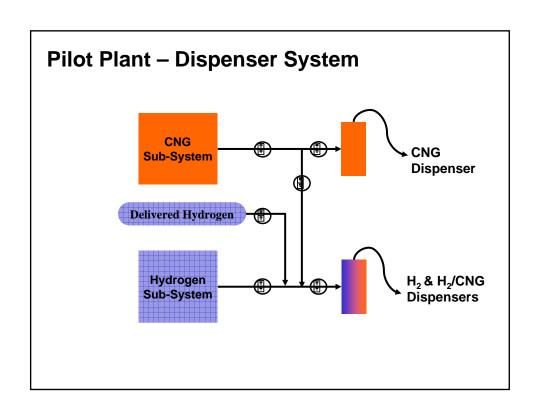
Pilot Plant - Emergency Shutdown System

- Ultra-fast IR/UV detectors
- Combustible gas detectors
- Manual (5) & remote trips
- Vent stack temperature monitor
- Alarms horns & strobe lights
- · Vent stack fire suppression



Pilot Plant – Hydrogen Gas Detectors


- Six combustible gas detectors (Det-Tronics RS 8471)
- Monitors hydrogen & natural gas in 1% increments of lower flammability limits (LFL)
- Alarm condition at 25% of LFL reached
- Emergency shutdown when 50% of LFL reached



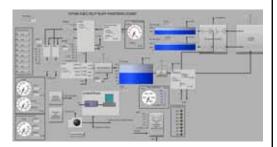
Pilot Plant - Flame Detectors

- Two mid-level (35 feet) & four corner IR/UV flame detectors (Spectrex 20/20LB units)
- · One detector at fuel dispenser unit
- If flame detected, emergency shutdown initiated within 3 milliseconds

Pilot Plant - Fueling Dispensers

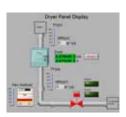
- Includes metering & electronic billing interface
- · Fully permitted for motor fuel dispensing
- Public access

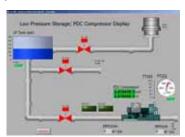
Prototype Dispenser Testing


- Uses proportional flow control valves for hydrogen & CNG gas streams from 100 to 40,000 scfh
- Real-time ratio control of blended fuels uses coriolis mass flow transducers in hydrogen & CNG gas streams
- 1 Nozzle CNG & HCNG fuels (15, 20, 30, & 50% hydrogen by volume) at 3,600 psi

• 1 Nozzle - 100% hydrogen at 5,000 psig

 Being commercialized by Clean Energy


Pilot Plant - Monitoring


- Real-time station & component monitoring at 100 nodes
- Fuel quantities & costs collected for pure hydrogen and HCNG blended fuels
- Electric power equipment
 - Voltages & currents
- Select process temperatures
- Major process parameters
 - Pressures & flows

Pilot Plant - Monitoring

- 545 Hydrogen, 3,940 HCNG, & 6,810 CNG fueling events & 8,600 kg of hydrogen produced (6/30/06)
- Hydrogen kg energy costs based on historical (26% to 49%) & projected (70%) plant factors
 - \$3.43 down (26% PF) to \$2.39 per kg (70% PF)
 - DOE 2005 energy cost target \$2.47
- Water cost per kg of hydrogen \$0.10

Hydrogen & HCNG ICE Vehicle Testing

- Initial ICE hydrogen & HCNG vehicle testing
 - Dodge van on 15% HCNG (operating)
 - Ford F150 up to 30% HCNG (operating)
 - Ford F150 up to 50% HCNG (testing complete)
 - 100% hydrogen Mercedes Benz van (operating)
- Total of 300,000 hydrogen & HCNG miles

15% HCNG Dodge Van Emissions Testing

- 5.2 L CNG V8 (no modifications) with 71,000 HCNG test miles no problems
- 27,000 miles of 15% HCNG fuel data 15.5 miles/GGE

Percentage change in 15% HCNG			
emissions compared to 100% CNG			
emissions			
Total hydrocarbons	-34.7%		
Carbon monoxide	-55.4%		
Oxides of nitrogen	+92.1%		
Carbon dioxide	-11.3%		

30% HCNG F150 Testing

- 5.4 L V8 CNG engine added: supercharger, ignition modifications & exhaust gas recirculator
- Fleet testing 59,000 30% HCNG miles: 17.3 miles/GGE

Fuel Blend	0 to 60 mph (secs.)	Miles/GGE	Range (miles)
CNG	10.10	23.3	122
15% HCNG	10.97	22.6	110
30% HCNG	12.68	23.5	102

30% HCNG F150 Emissions Testing

Fuel	Percentage Change in Emissions Testing					
Туре	NMHC	CH ₄	нс	СО	NO _x	CO ₂
Gasoline	Base	Base	Base	Base	Base	Base
CNG	-80	+967	+35	-63	-34	-24
15% HCNG	-78	+1000	+40	-70	-26	-27
30% HCNG	-89	+1050	+37	-73	-25	-28

NMHC=Non-Methane Hydrocarbons HC=Total Hydrocarbons NOx=Oxides of Nitrogen CH₄=Methane CO=Carbon Monoxide CO₂=Carbon Dioxide

50% HCNG F150 Emissions Testing

- Modifications
 - SVO heads, exhaust intercooler & supercharger
 - Exhaust gas recirculator & ignition modification
 - Equipped with 3 Quantum hydrogen 3,600 psi tanks with 3 kg total storage

Percent reduction in emissions (HCNG versus gasoline-fueled F-150)

нс	СО	O NO _x	CO ₂	
-3.5%	-43.3%	-97.0%	-16.7%	

HC = total hydrocarbons CO = carbon monoxide CO_2 = carbon dioxide NOx = oxides of nitrogen

HCNG ICE Vehicle Fleet Operations

- APS meter reader fleet 12 Bifuel vehicles (GM)
 - 1,600 fueling events, 190,000 miles using 10,600 GGE of 15% HCNG
- Public Fleet private party Bifuel conversions
 - 350 fueling events, 36,000 miles (estimated) using 1,800 GGE of HCNG blends (mostly 15%)

5.4L 16-valve 100% Hydrogen ICE Vehicle

- 5.4L V-8, 100% hydrogen 16-valve Ford/ETEC pickup
- 5 speed transmission, supercharged (3 psi boost), hydrogen fuel injectors, & air-to-water intercooler
- Hardened valves & seats, & forged pistons with 12:1 compression
- Motec fuel & spark controls, lean-burn mode
- Onboard hydrogen storage 3 Dynetek tanks @ 3,000 psi, 6.5 kilograms, aluminum vessel & fiberglass wrap
- Converted by ETEC
- 1,365 lbs payload

5.4L 16-valve 100% Hydrogen ICE Vehicle

- Baseline Performance testing results
 - Max speed @ 1 mile: 81 mph & 1/4 mile: 58 mph
 - Acceleration (0 to 50 mph): 18.1 seconds
 - SAE J1634 fuel economy (AC on): 14.5 miles/GGE
 - SAE J1634 fuel economy (AC off): 18.0 miles/GGE
 - 45 mph constant speed: 27.0 miles/GGE
 - Range 95 (14.5 miles/GGE) to 175 miles (27 miles/GGE)
- Fleet testing 5,200 miles: 17.4 miles/GGE (110 miles range)

5.4L 32-valve 100% Hydrogen ICE Vehicle

- 5.4L V-8, 100% hydrogen 32-valve Ford/ETEC pickup
- Automatic transmission, hydrogen fuel injectors, 12 pounds supercharger boost & air-to-air intercooler
- Hardened valves & seats, & forged pistons with 11.5:1 compression
- Motec fuel & spark controls, lean-burn mode
- 8,000 fleet testing miles 14.4 miles/GGE
- Onboard hydrogen storage 3 Dynetek tanks @ 5,000 psi, 15.3 kilograms (230 miles range)
- Converted by ETEC

6L V-8 100% Hydrogen ICE Vehicle

- Base vehicle: Chevrolet 1500HD crew cab (4 door) with 6L V8 CNG engine
- Converted by ETEC/Roush to 100% hydrogen
- 4-speed automatic transmission, electronic port fuel injection, supercharger, liquid-to-air intercooler
- Integration of powertrain control module & development of hydrogen lean-burn control strategies
- Implementation of J1850 communications to maintain seamless integration with existing OEM equipment

6L V-8 100% Hydrogen ICE Vehicle

- 10.5 kg 100% hydrogen storage onboard @ 5,000 psi
- 200 Horsepower & 260 lb-ft torque
- Preliminary Argonne dynamometer results
 - 20 miles highway & 14 miles city per GGE
 - Range 140 to 200 miles
 - THC 0.0005 g/mi, NOx 0.0610 g/mi, CO 0.0685 g/mi, & CO₂ 0.0926 g/mi
- Nine vehicles produced
- 8 units to Vancouver B.C.

Acknowledgement

This work is supported by DOE's

FreedomCAR and Vehicle Technologies Program

Vehicle Systems Team Leader, Tien Duong

Project Leader and VSATT Lead, Lee Slezak

Additional Information

http://avt.inl.gov

INL/CON-06-11577