

Purpose: Electric Vehicle Infrastructure (EVI) Lab

- Evaluate electric vehicle charging infrastructure
 - Independent evaluation of vehicle charging system
 - Efficiency, and Power Quality at various power levels
 - Additionally for wireless charging: EM-field safety and coil alignment and coil gap impact
 - Evaluate cyber security vulnerabilities of charging systems
 - Evaluate and develop EV integration with renewable resources in both distributed and micro-grid environments
- EVI lab supports codes and standards development – SAE
 - Wireless Charging (J2954)
 - Charger Power Quality (J2894)
 - EnergyStar ratings for conductive EVSE

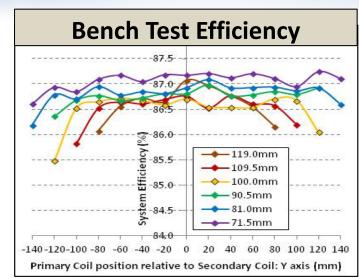
Facility testing capabilities

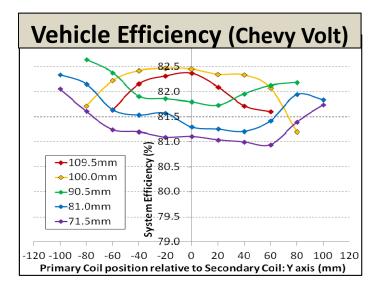
- Wide range of facility input power (total of 400 kVA)
 - Residential power: 120 / 240 VAC 1
 - Commercial power: 208 / 480 VAC 3ϕ
- Vehicle emulator (for bench tests)
- Multiple test vehicles from various manufacturers
- Laboratory measurement equipment (Electrical power, EM-field, IR temperature)

Wireless Charging: Evaluation and Codes & Standards Support

INL Wireless charging testing and evaluation

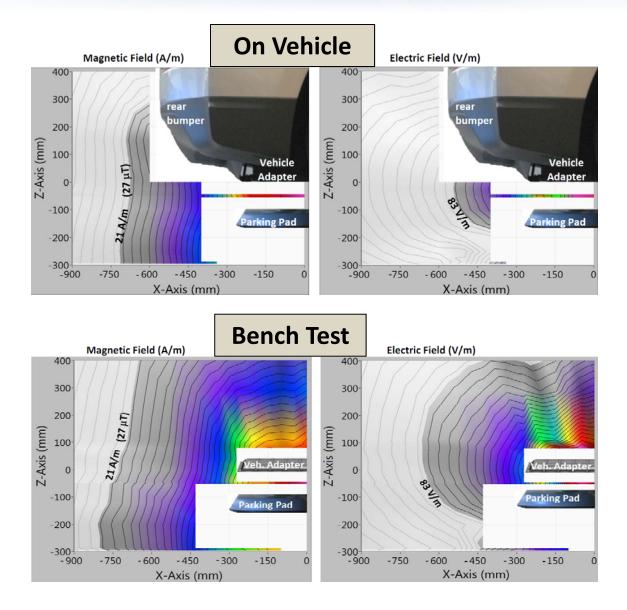
- On-board vehicle testing
- Standalone sub-system testing (bench test)
- Directly supports SAE J2954 test procedure development, EM-field evaluation, and interoperability evaluation
- INL test setup adopted in the current draft of SAE J2954 TIR




INL Test Results example: Efficiency

Evatran PLUGLESS wireless charger

- Efficiency varies with coil gap and misalignment
- Significant differences between on-board and bench testing
 - Due to steel vehicle chassis absorbing electromagnetic field
- Output power also has efficiency effects
 - Decreased power → decreased efficiency



INL Test Results example: EM-field around vehicle

Upcoming Wireless Charging Testing

U.S. DOE FOA-667 evaluation of vehicle WPT system

- ORNL, Toyota, Evatran collaboration
 - RAV4 EV with prototype circular topology WPT
 - Input 240 VAC, 50 A
- Hyundai, Mojo Mobility collaboration
 - Kia Soul EV with prototype circular topology WPT
 - Input 240 VAC, 100 A
- Three SAE J2954 prototype master / reference coil systems for interoperability evaluation and document requirements refinement
 - WPT1 / Z1-Z2 circular coil topology
 - 3.7 kW, 100-210mm gap
 - WPT2 / Z2-Z3 circular coil topology
 - 7.7 kW, 140-250mm gap
 - WPT2 / Z1-Z3 Double "D" coil topology
 - 7.7 kW, 100-250mm gap

Conductive Charging: Evaluation and Test Procedure Development

Conductive EVSE test procedures for Energy Star

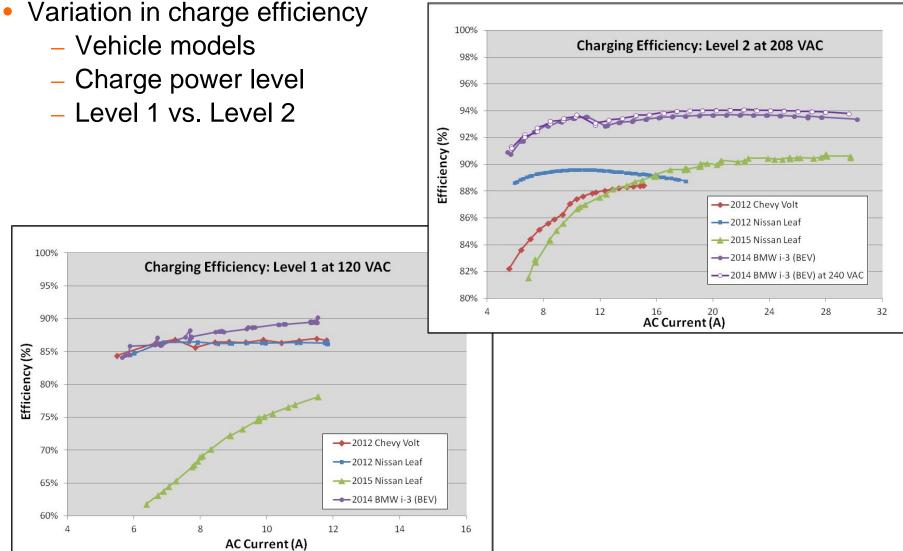
- Test Methods document created for Level 1 and Level 2 EVSE
 - Definitions
 - Test equipment requirements
 - Test procedures and measurements
 - Standby power consumption
 - Power loss during charging
- Ratings recommendations for EVSE with additional features
 - EVSE rated maximum current
 - Cord length
 - Status lights
 - Smart Grid communications
 - Touch screen interface
 - Active brightness control

Evaluation of 4 smart grid capable EVSE

- Four U.S. DOE funded awardees developed EVSE with smart grid communication capabilities
 - Commercial EVSE: GE, Eaton
 - Residential EVSE: Siemens, Delta
- Final deliverable EVSE were evaluated by INL
 - Functionality
 - Stand by power consumption
 - Losses during charging
- Cyber Security Vulnerability assessment
 - Physical security
 - Communications security
 - wired and wireless
 - Software and firmware assessment

On-board charger power quality

- With smart grid communication, plug-in electric vehicles can be controllable loads on the grid
- Vehicle response must be understood
 - Power Quality (efficiency, power factor, total harmonic distortion)
 - Dynamic characteristics (response to voltage sag, swell, noise, etc.)
- INL supports SAE J2894 development
- INL characterized the on-board charger for several vehicles
 - 2012 Chevrolet Volt (3.3 kW charger)
 - 2012 Nissan Leaf (3.3 kW charger)
 - 2015 Nissan Leaf (6.6 kW charger)
 - 2014 BMW i3 (7.2 kW charger)
 - more planned in the near future



INL Test results of On-Board Charger: Efficiency

EVI Lab Coordination in other Areas of Research

Cyber Security Evaluation of Charging Infrastructure

- DC Fast Charger cyber security vulnerability assessment
 - CHAdeMO using Nissan Leaf
 - CCS using Chevy Spark
- Evaluate cyber security
 - Vulnerability in connection between DCFC to vehicle
 - Protocols
 - communication
 - DCFC to back office
 - includes data, billing, energy management, etc.
 - Vehicle robustness to attack

Vehicle Integration with Renewable Resources

RTDS

- High speed control and communication between INL and NREL
- Renewable resources
 - wind, solar, etc.
- Electric vehicles
- Micro-grid
- Supports grid modernization
- Coordinated control system
- Cyber security

Charging Infrastructure Evaluation with RTDS

- Evaluate charging infrastructure using Grid Emulator
 - Variable AC power supply
 - 1¢ or 3¢ phase
 - 100 VAC to 520 VAC
 - Bi-directional
 - Dynamic grid event emulation
 - sag, swell, step, pulse, harmonics, etc.
- Real Time Digital Simulation
 - Hardware in the loop
 - Integration with renewable resources
 - Real time connection between RTDS at INL and NREL

Summary

- Benchmark advanced technologies
 - Charging system performance and safety
- Support codes and standards development
 SAE J2954, J2894, and EPA Energy Star
- Cyber Security vulnerability evaluation
- Develop and evaluate vehicle integration with renewable resources and other grid modernization efforts

daho National Laboratory