WHERE RESEARCH MEETS THE ROAD

ADVANCED TRANSPORTATION

Kev Adjemian, PhD
Department Manager, Energy Storage and Transportation Systems • at.inl.gov
Why we do what we do…

Energy Security

Finite Resource

Air Quality

Clean Energy Economy

Climate Change

INL Idaho National Laboratory
Impact of Transportation

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2013 (EPA)

<Vehicle Usage is Global>

Sales:
- 16.5 M Sales US (2014)
- 5.5 M Sales Japan (2014)
- 11.8 M Sales EU (2014)
- 19.7 M Sales China (2014)

Total: 88.5 M globally
Federal Government’s Response
Office of Energy Efficiency & Renewable Energy (EERE)

- EERE is split into three areas:
 I. Renewable Energy: $370M
 II. Energy Efficiency: $664M
 III. Sustainable Transportation: $558M

Drivers of Technology:
- Reduce GHG emissions by 17% by 2020
- Reduce net oil imports by 50% by 2020
- Achieve CAFE Standards 54.5 mpg by 2025

Japan, China, EU
50+ mpg by 2020
California’s Response for Advanced Transportation

State Level:
California Air Resource Board (CARB) introduced the Zero Emission Vehicle (ZEV) mandate starting in 1990 in order to:

1. Reduce smog
2. Reduce greenhouse gas
3. Promote cleanest cars
4. Provide fuels for cleanest cars (electricity & hydrogen)

❖ Zero Emission Vehicle (ZEV) mandate drives sales in California
 – 7,500 ZEVs 2012-2014; 25,000 ZEVs 2015-2017

❖ 10 other states will mandate the same:
 – Connecticut, Maine, Maryland, Massachusetts, New Jersey, New Mexico, New York, Oregon, Rhode Island, and Vermont

❖ ZEV credits have their own market…
Advanced Transportation: Drivers & Gaps

<Drivers>:

- **High Level Goals at the Federal Level - DOE-EERE:**
 - Reduce GHG emissions by 15% by 2020
 - Reduce net oil imports by 50% by 2020
 - Achieve CAFE Standards 54.5 mpg by 2025 (Others: 50+ mpg by 2020)

- **State Level Mandates Driving Sales - CARB:**
 - Reduce smog / reduce greenhouse gas
 - Promote cleanest cars / provide fuels for cleanest cars (e⁻ & H₂)
 - 7,500 ZEVs between 2012 - 2014; 25,000 ZEVs between 2015 - 2017

<Gaps>:

1. Cost of vehicle is prohibitive to consumer
2. Vehicle does not meet the perceived needs of the consumer (range, fill-time, infrastructure accessibility, cost, convenience)
3. Infrastructure / fuel is cost prohibitive or does not exist
INL’s Advanced Transportation Activities

- Attacking the key challenges of cost, consumer acceptance & infrastructure for alt-fuel vehicle mass-adoption at INL with:
 - Talent
 - Facilities
 - Partnerships

- Investigating next generation low cost batteries
- Enabling low cost hydrogen production & grid services
- Educating the customer, policy-maker, and industry
- Developing next gen low-carbon / low cost fuels
INL’s Advanced Transportation Activities

- Attacking the key challenges of cost, consumer acceptance & infrastructure for alt-fuel vehicle mass-adoption at INL with:
 - Talent
 - Facilities
 - Partnerships

Performance & Life Testing
- Cost reduction
- Performance improvements

Big Data
- Optimizing consumer experience w/alt-vehicles & infrastructure

Emulation & Simulation
- Added value hydrogen production

Performance Science

Vehicles Energy Storage

Vehicles Transportation Systems

H2 & Fuel Cells

Bioenergy Feedstock National User Facility

Infrastructure
- Development of global standards

Feedstocks
- Cost reduction
- Quality improvement
- Scale-up and integration
Scientific understanding

- Develop computational models
- Experimental design and development
- Perform tests to validate models and approaches
- Quantify uncertainty & scale up systems
- Assess performance and target R&D

- Publish Data
 - Science community
 - Regulators
 - Policy makers

- Speed deployment by reducing risk & cost
- Enable fact-based regulation
- Provide for better targeted R&D

- Accelerate innovation to market
 - Speed deployment by reducing risk & cost
 - Enable fact-based regulation
 - Provide for better targeted R&D
Vehicles – Energy Storage & Transportation Systems

Development of Next-Generation Low Cost / Reliable Batteries:
- Leverage unique INL capabilities to lead Performance Science
- Foundation: Battery Testing Center & Advanced Vehicle Testing
- Growth via strong partnerships with:
 1. DOE-EERE (USABC)
 2. Automotive OEMs
 3. Battery Developers
- Impact: Enabling / accelerating next gen low cost batteries
Example of Performance Science:

- Battery Degradation of Level II (240V) vs. DCFC (480V)
 - Pre-conceived notions that DCFC would be extremely detrimental for battery durability
- Performance Science Based testing of vehicles on the road and in the lab
Vehicles – Energy Storage & Transportation Systems

Example of Performance Science:
- Battery Degradation of Level II (240V) vs. DCFC (480V)
- On-road and pack testing indicates otherwise...
 - High-temperatures is by far more detrimental than DCFC
- Higher return on investment on future infrastructure; new understanding, new experiments

After 50,000 miles (80,000 km):
- No appreciable difference in capacity loss (~2%) between Level II and DC Fast Charging
- On-Road cycled packs subjected to varying temperatures each period
- In-lab cycled packs cycled in constant ambient temp (30°C)
- Capacity loss rate approaches steady state in constant temperature testing
Vehicles – Transportation Systems

Enhance Consumer Experience with Alt-Fuel Vehicles:
- Leverage unique INL capabilities to lead big data analysis
- Foundation: Advanced Vehicle Testing & EV Infrastructure Laboratory
- Growth: Steward to DOE-EERE, auto OEMs, SAE & CARB
- Impact: Increasing return on investment on alt-fuel infrastructure development / deployment

Big-Data Analysis

Heat maps of EV chargers

Global standardization of wireless charging with SAE & OEMs

Alt-fuel corridor analysis
Vehicles – Transportation Systems

Example of Performance Science:
- CARB ZEV credit ratios for EVs, HEVs, PHEVs, EREVs etc.
 - Preconceived notion that EVs should have the highest ZEV credit as it truly is zero emission (no onboard ICE)

EV (Electric Vehicle):
Pure electric - Charged by Plugging In (no engine) – 100 mile electric range Fully ZEV

EREV (Extend Range Electric Vehicle):
Pure electric for 40 miles, then engine kicks on for extended range (series)
Partial ZEV but is it....

PHEV (Plug-in Hybrid Electric Vehicle): Similar architecture as HEV (parallel) but battery can also be charge by plugging in (series); minimal ZEV range (10 miles) Both Partial ZEV
Example of Performance Science:
- CARB ZEV credit ratios for EVs, HEVs, PHEVs, EREVs etc.
- INL’s data collection and analysis from EV Everywhere actually indicates EREVs eVMT (electric vehicle miles traveled) is comparable to pure EVs (PHEVs are about half)
- CARB may equalize ZEV credit ratios between EVs and EREV which could potentially shift billions of auto OEM R&D dollars

<table>
<thead>
<tr>
<th></th>
<th>BEV</th>
<th>EREV</th>
<th>PHEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Vehicles</td>
<td>4,039</td>
<td>2,193</td>
<td>645</td>
</tr>
<tr>
<td>Total Vehicle Miles Traveled VMT (miles)</td>
<td>28,520,792</td>
<td>10,043,000</td>
<td>4,912,920</td>
</tr>
<tr>
<td>Total Calculated Electric Vehicle Miles Traveled eVMT (miles)</td>
<td>28,520,792</td>
<td>10,043,000</td>
<td>4,912,920</td>
</tr>
<tr>
<td>Percent of EV-equivalent miles</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>estimated Annual VMT</td>
<td>9,697</td>
<td>9,548</td>
<td>9,680</td>
</tr>
<tr>
<td>estimated Annual eVMT</td>
<td>9,697</td>
<td>9,548</td>
<td>9,680</td>
</tr>
</tbody>
</table>
Providing Added Value to Hydrogen:

- Leverage unique INL capabilities and real-time data connection with NREL to provide higher value grid services – H_2 or e^- for grid / vehicle
- Foundation: Fuel Cell Technology Office
- Growth: EERE Advanced Transportation & Nuclear Energy (leverage Hybrid ES)
Cross-cut EERE & Nuclear Energy

Leveraging Existing Data Connection:

- Fully Integrated ESL Facility with hydrogen production, storage, distribution, and bus fleet to “the site”
- Energy systems performance science evaluation of the following technologies:
 - Energy storage (Li-ion, flow-cell, super-caps, flywheels, FCs), vehicles (EV, FCEV) and grid (solar, wind & nuclear)
- Impact: Clean Grid, Clean Vehicles / Clean Federal Fleet
Bioenergy – Biofuels

Feedstock Performance Science
- Leverage unique INL capabilities to lead feedstock Performance Science
- Foundation: Lead feedstock RD&D for EERE Bioenergy office
- Growth: Expanding industry impact through National User Facility
- Impact: Risk reduction to pioneer refineries, advanced technologies for expanding the market

Supply & Logistics

Preprocessing (EERE Bioenergy Core Competency)

Performance Characterization
- Biomass Characterization Lab
- Biomass Library

Cost, Quality & Sustainability Analysis
Advance Sustainable Transportation

- With stretch targets to reduce greenhouse gas emission, improve CAFE mileages, and decrease dependency on foreign oil; alt-fuel vehicles (electric, biofuel, hydrogen) will continue to be developed regardless of the commodity price of oil.

- Gaps towards achieving these targets are primarily around the cost of the alt-fuel vehicle, its corresponding infrastructure / fuel and customer education.

- INL is attacking these gaps across our Advanced Transportation Activities.

- Performance Science approach to:
 - Reducing battery costs / electrified power-trains
 - Educating consumers with alt-fuel vehicles and their respective infrastructure
 - Adding grid services via hydrogen production
 - Analyzing and modeling of alt-fuel infrastructure