12 Volt Auxiliary Load: Fuel Economy Sensitivity Study and Advanced Alternator Evaluation

Barney Carlson

Idaho National Laboratory Energy Storage & Transportation Systems Advanced Vehicle Testing Activity (AVTA)

INL/MIS-15-36956

Aymeric Rousseau

Argonne National Laboratory Autonomie team

Introduction

- Investigate and quantify the impact of auxiliary load on vehicle fuel economy
 - Dynamometer testing
 - Artificially <u>Elevate</u> and <u>Reduce</u> auxiliary load
 - External DC loads and power supplies
 - Remove / disconnect alternator entirely to quantify sensitivity bounds
 - Map the efficiency performance of state of the art alternator technologies (speed vs. torque)
 - Benchmark advanced alternator technology
 - Test and compare Mazda 3 i-ELOOP to standard Mazda 3
 - Combine the above results with U.S. national fleet driving and climate data to quantify national petroleum displacement impact

Measure Auxiliary Load Impact on Fuel Economy

- Test one or more AVTE vehicles (from present 12V Aux. evaluation)
 - Baseline: prior APRF testing
 - Elevated auxiliary load
 - external DC load
 - Additional accessories ON
 - Reduced auxiliary load
 - External DC power supply to offset auxiliary load
 - Remove and/or disconnect the alternator to determine minimum bound

Mazda 3: i-ELOOP vs. standard alternator

- Evaluate standard Mazda 3 and compare to Mazda 3 i-ELOOP
- Acquire one or more used 2014 Mazda 3 with standard alternator
- Testing and evaluation
 - Dynamometer testing
 - Standard suite of drive cycle testing across 3 temperatures
 - Baseline / track testing
 - On-road operation
 - Operate both vehicles on-road, concurrently (side by side)
 - Operate same accessories concurrently

Autonomie will be used to evaluate Advanced Alternator Benefits to Multiple Drive Cycles and Multiple Powertrain Technologies

Impact of advanced alternator technology & accessory load reduction on FE benefits for

- A large set of real world driving scenarios.
- Advances in engine technology.

Background info: Several RWDC drive Cycles from NREL TSDC database have been previously used in **Autonomie**

Information per Vehicle

Kansas City

California **Household Travel** Survey 2012

Chicago Metropolitan Agency

Attributes: # trips per day, Trip start time, End Time, Vehicle ID, Day ID, etc. Along with time stamped data.

Additional information also provided

AUTONOMIE READY!!!

Real World Drive Cycles OR Sets of Daily Driving Schedules

to match NHTS

Summary

- This study will investigate and quantify the impact of auxiliary load on vehicle fuel economy
 - Artificially <u>Elevate</u> and <u>Reduce</u> auxiliary load
 - Map the efficiency of state of the art alternator
 - Benchmark advanced alternator technology in a production vehicle platform
 - Combine the above results with U.S. national fleet driving and climate data to quantify national petroleum displacement impact