U.S. Department of Energy Vehicle Technologies Program’s Plug-in Electric Vehicle and Charging Infrastructure Demonstrations

John Smart

IEEE Power & Energy Society General Meeting Electric Vehicle Super Session
Detroit, MI
July 26, 2011

This presentation does not contain any proprietary or sensitive information
Idaho National Laboratory

- Eastern Idaho based U.S. Department of Energy (DOE) Federal laboratory
- 890 square mile site with 3,600 staff
- Support DOE’s strategic goal:
 - Increase U.S. energy security and reduce the nation’s dependence on foreign oil
- Multi-program DOE laboratory
 - Nuclear Energy
 - Fossil, Biomass, Wind, Geothermal and Hydropower Energy
 - Advanced Vehicles and Battery Development
 - Energy Critical Infrastructure Protection
AVTA Participants and Goals

• Participants
 – The Advanced Vehicle Testing Activity (AVTA) is part of DOE’s Vehicle Technologies Program
 – The Idaho National Laboratory (INL) conducts the AVTA per DOE guidance
 – 100+ fleets and organizations as testing partners
 – Some of these ATVA vehicle testing activities are conducted with ECOtality North America

• The AVTA goal - Petroleum reduction and energy security
 – Perform testing and Provide benchmark data to technology modelers, research and development programs, vehicle manufacturers (via VSATT), and target and goal setters
 – Assist fleet managers in making informed vehicle and infrastructure purchase, deployment and operating decisions
Presentation Outline

• US DOE’s Transportation Electrification Demonstrations
• INL’s role with data collection and reporting
• Recovery Act data collection projects
• EV Project background and results to date
• Ford PHEV Escape demo results to date
• Other data collection activities
DOE’s Transportation Electrification Demonstrations under American Recovery and Reinvestment Act (ARRA)
ARRA Transportation Grants

• $2 Billion in DOE grants to establish advanced battery, power electronics and motors manufacturing

• $400 Million for Transportation Electrification Demonstration, Infrastructure, and Education
 – 8 awards totaling over $360M for grid-connected vehicle and infrastructure demonstrations
 • 13,000 vehicles from 9 OEMs and over 22,000 charging stations are being deployed across America
 • Vehicle performance and grid impact data are being gathered and analyzed to support the development of vehicle technologies and grid infrastructure
 – 10 awards totaling $39M to establish comprehensive educational and outreach programs
Transportation Electrification Demonstration Activities

ECOtality North America - AWARD: $114.8M
The EV Project infrastructure demonstration

- Demonstration of 5,700 Nissan Leaf EVs and 2,600 Chevy Volt EREVs
- Deployment of 15,000 Level 2 electric vehicle supply equipment (EVSE) charging Stations (EVSE) and 300 fast chargers, in 16 metropolitan areas
- Full instrumentation of vehicles and infrastructure for comprehensive data-collection and analysis effort

Coulomb Technologies - AWARD: $15M
ChargePoint America infrastructure demonstration

- Deployment of approximately 4,000 public and private charging stations in up to 9 U.S. Cities
- Locations will be coordinated with OEM deployment of 400 grid connected vehicles
Transportation Electrification Demonstration Activities (cont’d)

General Motors - AWARD: $30.5M
Chevrolet Volt vehicle demonstration

- Develop, analyze, and demonstrate 145 Chevy Volt EREVs for electric utilities and 500 Volt EREVs to consumers
- Manufacturing in Detroit, MI; Deployment in conjunction with several utility partners

Chrysler, LLC - AWARD: $48M
Ram PHEV vehicle demonstration

- Development, validation, and deployment of 140 PHEV Dodge Ram pickups
- Deployment of vehicles through 11 partner fleets across a wide range of geographic, climatic, and operating environments
Transportation Electrification Demonstration Activities (cont’d)

South Coast Air Quality Management District - AWARD: $45.4

- Development of a fully integrated production PHEV system for Class 2-5 vehicles (8,501-19,500 lbs GVWR).
- Demonstration of 378 trucks and shuttle buses through network of partner fleets
- SCAQMD based in Diamond Bar, CA; Manufactured in Galesburg, MI, and Elizabethtown, KY

Smith Electric Vehicle - AWARD: $32M

- Develop and deploy up to 500 medium-duty electric trucks.
- Manufacturing in Kansas City, MO; Deployment in conjunction with 20 launch partners representing a range of commercial and public sector markets, geographies, and climates
Transportation Electrification Demonstration Activities (cont’d)

Navistar, Inc. - AWARD: $39.2M

- Develop, validate, deploy 950 advanced Battery Electric delivery trucks (12,100 lbs GVWR) with a 100-mile range
- Manufacturing in Elkhard Co., IN; Deployment in Portland, Chicago, and Sacramento

Cascade Sierra Solutions - AWARD: $22.2M

- Deployment of truck stop electrification infrastructure at 50 sites along major US interstate corridors
- Provide 5,450 rebates of 25% of the cost for truck modification to incorporate idle reduction technologies
INL Data Collection Activities in Support of DOE’s Transportation Electrification Demonstrations
INL Data Collection Support

• INL tasked with data collection, analysis, and reporting for five light-duty vehicle and infrastructure deployment projects funded by DOE:
 – EV Project:
 • 8,300 Leaf BEVs and Volt EREVs,
 • 15,300 ECOtality Level 2 EVSE and fast chargers.
 – 4,700 Level 2 EVSE deployed by Coulomb
 – 140 Chrysler Ram PHEV Pickups
 – 145 Chevrolet Volt Extended-range electric vehicles
 – 21 Ford Escape PHEV SUVs
• Data is being collected from all vehicles and charging units
• Raw data and personal information protected by numerous Non Disclosure Agreements with project partners
Vehicle/EVSE Data Management Process

Process Affected by Disclosure Agreements

- **HICEVs**
- **HEVs**
- **PHEVs**
- **BEVs & EREVes**
- **EVSE & Chargers**

INL Vehicle Data Management System

- **File server**
- **SQL Server data warehouse**
- **Report generator**

Data quality reports

- Individual vehicle reports
- Fleet summary Reports - Public
- Focused technical analyses and custom reports
- Modeling and simulations

Parameters range check
- Lame data check
- Missing/empty parameter check
- Conservation of energy check
- SOC continuity
- Transfer completion
INL Data Management System - Push
(Nissan, GM, Chrysler, Coulomb)

- **Vehicle and Charger Data**
 - INL Internal firewall
 - EV Project FTPS/SFTP Server
 - Access restricted by firewall rules

- **OEM Data Management Systems**
 - OEM pushes using FTPS/SFTP
 - INL pulls with encrypted transmission
 - INL transmits reports to DOE and OEMs

- **Protected Data**
 - EV Project Team
 - EV Project Team
 - Internal data quality reports
 - Reports posted on WWW
 - INL Protect Enclave - EV Project Team
 - INL member access only
 - INL Internal firewall

- **INL DMZ Firewall**
 - Public has access to AVT.INL.GOV

- **AVT.INL.GOV**
 - Fleet summary reports - public

- **INL Data Management System**
 - Push

- **FTPS/SFTP Server**
 - Access by firewall rules

- **Protected Data**
 - Parameter range check
 - Lame data check
 - Missing/empty parameter check
 - Conservation/energy check
 - SOC continuity
 - Transfer completion

- **OEM Data Management Systems**
 - Nissan, GM, Chrysler, Coulomb

- **Vehicle and Charger Data**
 - EV Project FTPS/SFTP Server
 - Access by firewall rules
EV Project Locations (Largest Data Collection Activity)
EV Project Residential Infrastructure

• Deploy 8,300 battery electric vehicles
 – 5,700 Nissan Leaf battery EVs
 – 2,600 Chevrolet Volt extended range EVs

• Install 8,300 level 2 residential EVSE
EV Project Commercial Infrastructure

• Install ~5,300 level 2 EVSE
 – Retail locations
 – Municipal locations
 – Employer locations

• Deploy 200 Dual Port DC Fast Chargers
Objective of the EV Project

• Build mature EV charging infrastructure in nine regions and study:
 • Infrastructure deployment process
 • Customer driving and charging behavior
 • Impact on electric grid
• Provide lessons learned to enable mass deployment of plug-in electric vehicles and charging infrastructure
EV Project Nissan Leaf Vehicle Summary Report

Region: All
Number of vehicles: 35
Reporting period: January 2011 through March 2011

Vehicle Usage

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of trips</td>
<td>3,364</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total distance traveled (mi)</td>
<td>21,708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg trip distance (mi)</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg distance traveled per day when the vehicle was driven (mi)</td>
<td>32.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg number of trips between charging events</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg distance traveled between charging events (mi)</td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg number of charging events per day when the vehicle was driven</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Charging Location and Type

<table>
<thead>
<tr>
<th>Home charging location</th>
<th>Away-from-home charging locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC level 2 charging</td>
<td>AC level 2 charging</td>
</tr>
<tr>
<td>DC fast charging</td>
<td>Non-EV Project charging</td>
</tr>
<tr>
<td>Total number of charging events</td>
<td>800</td>
</tr>
<tr>
<td>Percent of all charging events</td>
<td>79%</td>
</tr>
<tr>
<td>Total time plugged-in (hr)</td>
<td>8,126</td>
</tr>
<tr>
<td>Percent of all time plugged-in at EV Project charging units</td>
<td>100%</td>
</tr>
<tr>
<td>Total electricity consumed (AC MWh)</td>
<td>5.25</td>
</tr>
<tr>
<td>Percent of all electricity consumed from EV Project charging units</td>
<td>100%</td>
</tr>
</tbody>
</table>

Charging Completeness

<table>
<thead>
<tr>
<th>Home charging location</th>
<th>Away-from-home charging locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC level 2 charging</td>
<td>AC level 2 charging</td>
</tr>
<tr>
<td>DC fast charging</td>
<td>Non-EV Project charging</td>
</tr>
<tr>
<td>Number of complete charging events¹</td>
<td>199</td>
</tr>
<tr>
<td>Percent of charging events of the same type and location</td>
<td>43%</td>
</tr>
<tr>
<td>Number of partial charging events²</td>
<td>268</td>
</tr>
<tr>
<td>Percent of charging events of the same type and location</td>
<td>57%</td>
</tr>
</tbody>
</table>

¹ Charging level, time plugged-in, and electricity consumed are not available from Non-EV Project charging units. Charging level could be AC level 1, AC level 2, or DC fast charging.
² Complete charging events end with battery state of charge at 90% to 100% (for charging events with SOC reported).
³ Partial charging events end with battery state of charge below 90% (for charging events with SOC reported).

Battery State of Charge (SOC) at the Start of Charging Events

Battery State of Charge (SOC) at the End of Charging Events
EV Project – Nissan Leaf Usage Report

Region: All
Number of vehicles: 35
Reporting period: January 2011 through March 2011

Vehicle Usage

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of trips</td>
<td>3,364</td>
</tr>
<tr>
<td>Total distance traveled (mi)</td>
<td>21,706</td>
</tr>
<tr>
<td>Avg trip distance (mi)</td>
<td>5.8</td>
</tr>
<tr>
<td>Avg distance traveled per day when the vehicle was driven (mi)</td>
<td>32.5</td>
</tr>
<tr>
<td>Avg number of trips between charging events</td>
<td>3.3</td>
</tr>
<tr>
<td>Avg distance traveled between charging events (mi)</td>
<td>21.5</td>
</tr>
<tr>
<td>Avg number of charging events per day when the vehicle was driven</td>
<td>1.5</td>
</tr>
</tbody>
</table>
EV Project – Nissan Leaf Usage cont’d

<table>
<thead>
<tr>
<th>Charging Location and Type</th>
<th>Home charging location</th>
<th>Away-from-home charging locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC level 2 charging</td>
<td>AC level 2 charging</td>
</tr>
<tr>
<td>Total number of charging events</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>Percent of all charging events</td>
<td>79%</td>
<td>0%</td>
</tr>
<tr>
<td>Total time plugged-in (hr)</td>
<td>8,126</td>
<td>0</td>
</tr>
<tr>
<td>Percent of all time plugged-in at EV Project charging units</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Total electricity consumed (AC MWh)</td>
<td>5.25</td>
<td>0</td>
</tr>
<tr>
<td>Percent of all electricity consumed from EV Project charging units</td>
<td>100%</td>
<td>0%</td>
</tr>
</tbody>
</table>
EV Project – Nissan Leaf Usage – cont’d

Battery State of Charge (SOC) at the Start of Charging Events

- Home location
- Away from home

Percent of Charging Events

Charging Event Starting SOC (%)

Battery State of Charge (SOC) at the End of Charging Events

- Home location
- Away from home

Percent of Charging Events

Charging Event Ending SOC (%)

[Images of bar charts showing the distribution of battery state of charge at the start and end of charging events, categorized by home location and away from home.]
EV Project – EV Charging Infrastructure Summary Report

- Charging unit usage
- Percent charging units with a vehicle connected by time of day
- Range of aggregate electricity demand versus time of day
- See next 2 slides

1 Includes all charging units that were in use by the end of the reporting period
2 A charging event is defined as the period when a vehicle is connected to a charging unit, during which period some power is transferred
3 Considers the connection status of all charging units every minute
4 Based on 15 minute rolling average power output from all charging units
EV Project – EV Charging Infrastructure Summary Report – cont’d

- Power demand range for any time during reporting quarter
- Yellow line is daily profile for the day with quarterly peak demand
- Both graphs in AC MW
- Based on 15 minute rolling average MW demand
EV Project – EV Charging Infrastructure Summary Report – cont’d

- Range of charging units with a vehicle connected
- Yellow line is for day with peak power demand
- Both graphs percent of charging units
Distribution of Electricity Consumed per Charging Event

- WE
- WD

Distribution of Length of Time with a Vehicle Drawing Power per Charging Event

- WE
- WD

EV Project – EV Charging Infrastructure Summary Report – cont’d
EV Project – Updated Number of Units

1st Quarter 2011 Report Leaf and EVSE Units with Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Leafs</td>
<td>50</td>
</tr>
<tr>
<td>Number of Blink EVSE</td>
<td>107</td>
</tr>
<tr>
<td>Total number of units providing data</td>
<td>157</td>
</tr>
</tbody>
</table>

July 25, 2011 Leaf and EVSE Units with Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Leafs</td>
<td>1,697</td>
</tr>
<tr>
<td>Number of Blink EVSE residential</td>
<td>1,752</td>
</tr>
<tr>
<td>Number of Blink EVSE commercial</td>
<td>122</td>
</tr>
<tr>
<td>Total number of units providing data</td>
<td>3,571</td>
</tr>
</tbody>
</table>
Ford Escape PHEV vehicle demo

- Ford produced 21 Ford Escape PHEVs prototype vehicles with 12 kWh battery pack
- Blended mode operation (engine comes on during charge depleting mode to meet power demand)
- Part of DOE’s Technology Acceleration and Deployment Activity
Ford Escape PHEV 3-Page Report

- 300,000 test miles and 24,000 trips
- All trips, 38 mpg, 101 AC Wh/mi & 66 DC Wh/mi
- Charge Depleting (CD), 52 mpg & 170 DC Wh/mi
- Charge Sustaining (CS), 32 mpg
- Plugging in = 63% increase in overall MPG when comparing CD to CS trips
- 56% of miles in CD trips
- 25% of miles in CS trips
Highway and city cycle impacts

- CD city, 48 mpg, 171 DC Wh/mi
- CD highway, 57 mpg, 169 DC Wh/mi
- CS city, 30 mpg
- CS highway, 32 mpg

Plugging in = 60% increase in city MPG and 78% increase in highway MPG (compare CD to CS)

During CD trips 50% miles with engine off

During CS trips 27% miles with engine off
Other INL Data Collection Projects – cont’d

• 140 Ram PHEV pickups – same report format as Ford Escape PHEVs (August reporting)
• 150 Chevy Volts data collection (August reporting)
• 20 Lithium PHEV Escape Quantum conversions (SCAQMD) – same format as Ford (August reporting)
• Development of vehicle-based battery test-bed mule for testing emerging battery technologies
• Developing other EVSE data collection activities that support Clean Cities-funded demonstrations with:
 – Aerovironment
 – Eaton
 – Shorepower
Acknowledgement

This work is supported by the U.S. Department of Energy’s EERE Vehicle Technologies Program

Argonne and Oak Ridge National Laboratories provide dynamometer and other testing support

More Information

http://avt.inl.gov