U.S. Department of Energy’s Vehicle Technologies Program -

A Summary of Results Thus Far from The EV Project

John Smart– Idaho National Laboratory

National Governor’s Association State and Local Plug-in Electric Vehicle Workshop
July 11, 2012

This presentation does not contain any proprietary or sensitive information
Idaho National Laboratory

- INL is a U.S. Department of Energy (DOE) federal laboratory
- 890 square mile site with 4,000 staff
- Support DOE’s strategic goal of reducing the nation’s dependence on foreign oil
- Multiple RDD&D programs
 - Nuclear, renewable, and unconventional fossil energy
 - Advanced vehicles and batteries
 - Homeland security and cyber security
DOE’s Advanced Vehicle Testing Activity (AVTA)

- INL manages light-duty vehicle and infrastructure testing for AVTA
 - AVTA is part of DOE’s Vehicle Technologies Program
 - ECOtality provides testing support via NETL

- ECOtality leads The EV Project, with INL, Nissan and GM/OnStar as primary partners

- EV Project and AVTA test partners include electric utilities, federal, state and local government agencies, private companies, and individual vehicle owners

- AVTA goal: Petroleum reduction and energy security through unbiased benchmarking of vehicle technology
Vehicle / Infrastructure Testing Experience

INL/AVTA testing has accumulated 47 million miles on 8,000 electric drive vehicles representing 100+ models

- EV Project: 4,278 Leafs, 428 Volts, 30.3 million test miles (as of 6/28/2012)
- PHEVs: 14 models, 430 PHEVs, 4 million test miles
- EREVs: 1 model, 150 EREVs, 878,000 test miles
- BEVs: 47 models, 2,000 BEVs, 5 million test miles
- HEVs: 19 models, 50 HEVs, 6 million test miles
- Micro hybrid (stop/start) vehicles: 3 models, 7 MHVs, 300,000 test miles
- NEVs: 24 models, 372 NEVs, 200,000 test miles
- UEVs: 3 models, 460 UEVs, 1 million test miles
- 6,000+ Electric Vehicle Supply Equipment (EVSE) charging units with data loggers
INL Vehicle/EVSE Data Management Process

Process Affected by Disclosure Agreements

HICEVs
HEVs
PHEVs
BEVs & EREVs
EVSE & Chargers

File server
SQL Server data warehouse
Report generator

INL Vehicle Data Management System

Data quality reports
Individual vehicle reports
Fleet summary Reports - Public
Focused technical analyses and custom reports
Modeling and simulations
The EV Project

Purpose: Build and study mature charging infrastructure and use lessons learned to streamline deployment of grid-connected electric drive vehicles
The EV Project

Data being collected from Nissan Leafs, Chevrolet Volts, and Blink AC level 2 and DC fast charge units

Chevrolet Volt

Blink AC level 2 wall-mount unit

Nissan Leaf

Blink DC fast charger
EV Project Overview Report

Vehicles and charging units reporting data through Q1 2012

• Charging infrastructure
 – 5,432 units
 – 665,968 charging events
 – 5,069 AC MWh

• Vehicles
 – 4,066 Leafs
 – 427 Volts
 – 22.6 million miles

Number of EVSE, Leafs, and Volts Reporting Data through Q1 2012
<table>
<thead>
<tr>
<th></th>
<th>Leafs</th>
<th>Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of vehicles</td>
<td>2,987</td>
<td>317</td>
</tr>
<tr>
<td>Number of Trips</td>
<td>773,602</td>
<td>76,425</td>
</tr>
<tr>
<td>Distance (thousands)</td>
<td>5,558 mi</td>
<td>610 mi</td>
</tr>
<tr>
<td>Average (Ave) trip distance</td>
<td>7.2 mi</td>
<td>8.0 mi</td>
</tr>
<tr>
<td>Ave distance per day</td>
<td>30.2 mi</td>
<td>36.4 mi</td>
</tr>
<tr>
<td>Ave number (#) trips between charging events</td>
<td>3.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Ave distance between charging events</td>
<td>27.4 mi</td>
<td>24.1 mi</td>
</tr>
<tr>
<td>Ave # charging events per day</td>
<td>1.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note that per-day metrics consider only days a vehicle is driven
EV Project – Leaf Usage Report (Q1 2012)

Charging Frequency by Location

Frequency of Charging by Charging Location

- Home location: 74%
- Away-from-home location: 19%
- Unknown location: 8%
EV Project – Volt Usage Report (Q1 2012)

Battery State of Charge (SOC) at the Start of Charging Events

<table>
<thead>
<tr>
<th>SOC (%)</th>
<th>Percent of Charging Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>25%</td>
</tr>
<tr>
<td>10-20</td>
<td>20%</td>
</tr>
<tr>
<td>20-30</td>
<td>15%</td>
</tr>
<tr>
<td>30-40</td>
<td>10%</td>
</tr>
<tr>
<td>40-50</td>
<td>5%</td>
</tr>
<tr>
<td>50-60</td>
<td>5%</td>
</tr>
<tr>
<td>60-70</td>
<td>10%</td>
</tr>
<tr>
<td>70-80</td>
<td>5%</td>
</tr>
<tr>
<td>80-90</td>
<td>10%</td>
</tr>
<tr>
<td>>90</td>
<td>5%</td>
</tr>
</tbody>
</table>

Battery State of Charge (SOC) at the End of Charging Events

<table>
<thead>
<tr>
<th>SOC (%)</th>
<th>Percent of Charging Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>0%</td>
</tr>
<tr>
<td>10-20</td>
<td>0%</td>
</tr>
<tr>
<td>20-30</td>
<td>0%</td>
</tr>
<tr>
<td>30-40</td>
<td>0%</td>
</tr>
<tr>
<td>40-50</td>
<td>0%</td>
</tr>
<tr>
<td>50-60</td>
<td>0%</td>
</tr>
<tr>
<td>60-70</td>
<td>0%</td>
</tr>
<tr>
<td>70-80</td>
<td>0%</td>
</tr>
<tr>
<td>80-90</td>
<td>0%</td>
</tr>
<tr>
<td>>90</td>
<td>80%</td>
</tr>
</tbody>
</table>

Home location

Away-from-home location
EV Project – EVSE Infra. Summary Report

Charging Availability

- National Data
- Range of Percent of Charging Units with a Vehicle Connected vs. Time of Day

Q1 2012

- 3,324 residential and 955 publicly available Level 2 EVSE
- 10 DC fast chargers
- 51,476 values produced for this 1st quarter 2012 report
EV Project – EVSE Infra. Summary Report

Charging Demand

- National Data
- Range of Aggregate Electricity Demand vs. Time of Day (AC MW)

Q1 2012
- 3,324 residential and 955 publicly available Level 2 EVSE
- 10 DC fast chargers
EV Project – EVSE Infra. Summary Report
Q1 2012 Charging Demand: Residential Level 2 EVSE

San Diego
Weekday

Washington State
Weekday

San Francisco
Weekday

Oregon
Weekday
EV Project – EVSE Infra. Summary Report

- National Data – 1st quarter 2012
 - Ave time vehicle connected R2 WD 11.4 hours
 - Ave time vehicle connected R2 WE 11.8 hours
 - Ave time vehicle drawing power R2 WD 2.4 hours
 - Ave time vehicle drawing power R2 WE 2.0 hours
 - Ave energy per charge event R2 WD 8.7 AC kWh
 - Ave energy per charge event R2 WE 7.3 AC kWh
 - Ave time vehicle connected P2 WD 6.3 hours
 - Ave time vehicle connected P2 WE 4.1 hours
 - Ave time vehicle drawing power P2 WD 2.1 hours
 - Ave time vehicle drawing power P2 WE 1.9 hours
 - Ave energy per charge event P2 WD 7.3 AC kWh
 - Ave energy per charge event P2 WE 6.6 AC kWh

- R: residential, P: public, WD: weekday, WE: weekend, 2: Level 2 EVSE
EV Project – EVSE Infra. Summary Report

- Percent AC MWH used by residential and public EVSE
- Percent charge events occurring by residential and public EVSE
Summary – Based on Q1 2012 Data

• Leaf regional miles per day range from 27.6 in Washington State to 33.4 in Phoenix
• Leaf regional miles per trip range from 6.2 in Oregon to 8.1 in Chattanooga
• Leaf regional miles per charge range from 23.4 in Oregon to 29.5 in San Francisco
• Known Leaf regional at-home charging frequency ranges from 68% in San Francisco to 89% in Tucson
• Volts @1.5 and Leafs @ 1.1, charges per day when driven
• Volts @36.4 and Leafs @30.2 miles driven per day
• Leafs @27.4 and Volts @24.1 miles driven / charge event
EV Project Observations To Date

• EV Project vehicles connected much longer than needed to recharge - opportunities to shift charging times
• Significant residential Level 2 charging occurs off-peak. In areas with EV charging time-of-use electricity rates, start of charging coincides with start of off-peak period.
• Leaf owners drive farther between charging than Volt owners, but not much farther
• Significant opportunities to understand:
 – How vehicle owners use public versus private infrastructure
 – Regional and seasonal changes in behavior
 – Demand for Level 2 EVSE versus DC fast charging
 – Etc. etc.
• Only about 25% of EV Project data collected to date…
 …We’ve only just begun
Acknowledgement

This work is supported by the U.S. Department of Energy’s EERE Vehicle Technologies Program

More Information
http://avt.inl.gov

Additional vehicle and infrastructure demonstrations results available for Chevrolet Volt, Chrysler Ram PHEV, Ford Escape PHEV, Coulomb ChargePoint America, and more.