AVTA Participants

- The Advanced Vehicle Testing Activity (AVTA) is the U.S. Department of Energy, Vehicle Technologies Program’s (VTP) singular field, tract, and laboratory based source of testing light-duty whole vehicle systems and subsystems
 - Idaho National Laboratory manages the AVTA for VTP
 - ECOtality provides testing support via a competitively bid NETL (National Energy Testing Laboratory) contract
- For the EV Project, ECOtality is the project lead and INL provides data collection, analysis and dissemination support
- Test partners include electric utilities, Federal, state and local government agencies, private companies, and individual vehicle owners
AVTA Goals

• The AVTA goals
 – Petroleum reduction and energy security
 – Benchmark technologies that are developed via DOE research investments

• Provide benchmark data to DOE, National Laboratories (ANL, NREL, ORNL, PNNL), Federal Agencies (DOD, DOI, DOT, EPA, USPS), technology modelers, R&D programs, vehicle manufacturers (via USCAR’s VSATT, EESTT, GITT), and target and goal setters

• Assist fleet managers, via Clean Cities, FEMP and industry gatherings, in making informed vehicle and infrastructure deployment and operating decisions
Vehicle / Infrastructure Testing Experience

- 77.9 million test miles accumulated on 10,736 electric drive vehicles representing 115 models
- EV Project: 7,317 Leafs, Volts and Smart EVs, 9,493 EVSE and DC Fast Chargers (DCFC), 60.1 million test miles
- ChargePoint: 3,799 EVSE reporting 553,439 charge events
- PHEVs: 14 models, 430 PHEVs, 4 million test miles
- EREVs: 1 model, 150 EREVs, 900,000 test miles
- HEVs: 21 models, 52 HEVs, 6.2 million test miles
- Micro hybrid (stop/start) vehicles: 3 models, 7 MHVs, 509,000 test miles
- NEVs: 24 models, 372 NEVs, 200,000 test miles
- BEVs: 47 models, 2,000 BEVs, 5 million test miles
- UEVs: 3 models, 460 UEVs, 1 million test miles
- Other testing includes hydrogen ICE vehicle and infrastructure testing

Note: all 4th quarter 2012 data is preliminary and subject to change
INL Vehicle/EVSE Data Management Process

Process Driven by Disclosure Agreements

Data quality reports

Individual vehicle reports

Fleet summary

Reports - Public

Focused technical analyses and custom reports

Modeling and simulation input

INL Vehicle Data Management System

Report generator

File server

SQL Server data warehouse

HICEVs

HEVs

PHEVs

BEVs & EREVs

EVSE & Chargers

Parameters range check

Lame data check

Missing/empty parameter check

Conservation of energy check

SOC continuity

Parameters range check

Lame data check

Missing/empty parameter check

Conservation of energy check

SOC continuity

Data quality reports

Individual vehicle reports

Fleet summary

Reports - Public

Focused technical analyses and custom reports

Modeling and simulation input
Data Collection, Security and Protection

- All vehicle, EVSE, and PII raw data is legally protected by NDAs (Non Disclosure Agreements) or CRADAs (Cooperative Research and Development Agreements)
 - Limitations on how proprietary and personally identifiable information can be stored and distributed
 - Raw data, in both electronic and printed formats, is not shared with DOE in order to avoid exposure to FOIA
 - Vehicle and EVSE data collection would not occur unless testing partners trust INL would strictly adhere to NDAs and CRADAs
 - Raw data cannot be legally distributed by INL
EV Project Goal, Locations, Participants, and Reporting

- **Goal**: Build and study mature charging infrastructures and take the lessons learned to support the future streamlined deployment of grid-connected electric drive vehicles.
- **ECOtality** is the EV Project lead, with INL, Nissan and Onstar/GM as the prime partners, with more than 40 other partners such as electric utilities.
- **EV Project** reporting requires INL to blend three distinct data streams from ECOtality, Nissan and Onstar/GM.
- **40 different EV Project reports** are generated quarterly for the general public, DOE, ECOtality, project participants, industry, regulatory organizations, as well as per special requests.
EV Project – EVSE Data Parameters Collected per Charge Event

- Data from ECOtality’s Blink EVSE network
- Connect and Disconnect Times
- Start and End Charge Times
- Maximum Instantaneous Peak Power
- Average Power
- Total energy (kWh) per charging event
- Rolling 15 Minute Average Peak Power
- Date/Time Stamp
- Unique ID for Charging Event
- Unique ID Identifying the EVSE
- And other non-dynamic EVSE information (GPS, ID, type, contact info, etc.)
EV Project – Vehicle Data Parameters Collected per Start/Stop Event

- Data is received via telematics providers from Chevrolet Volts and Nissan Leafs
- Odometer
- Battery state of charge
- Date/Time Stamp
- Vehicle ID
- Event type (key on / key off)
- GPS (longitude and latitude)
- Recorded for each key-on and key-off event

- Additional data is received monthly from Car2go for the Smart EVs
EV Project – Vehicle Deployments / Miles

- 7,346 vehicles reporting data
 - 5,801 Leafs. 79%
 - 1,215 Volts. 17%
 - 330 Smart EVs. 4%

- 60.1 million total miles
- 150,000 test miles per day
EV Project – EVSE Deployment and Use

- 9,493 total EVSE
 - 6,864 (72%) Residential EVSE
 - 2,575 (27%) non-residential EVSE
 - 54 (1%) DCFC

- 1.7 million charge events
 - 1,579,894 (92%) Residential EVSE
 - 131,298 (8%) non-residential EVSE
 - 8,820 (1%) DCFC
EV Project – Total Charge Energy (MWh)

- 14,418 MWh total electricity charged
 - 13,328 MWh (92%) residential
 - 1,029 MWh (7%) non-residential
 - 61 MWh (0.4%) DCFC

- Vehicle efficiency cannot be accurately calculated using total vehicle miles and total energy
 - Non-EV Project vehicles sometimes charge at EV Project EVSE
 - EV Project vehicles may charge at 110V or other 240V non-EV Project EVSE
EV Project Overview Report 4th Quarter 2012

- San Francisco has 17% of all EVSE 30% of all Leafs
- Washington DC has 16% and Texas has 18% of all Volts
EV Project – National Data

4th quarter 2012 Data Only

<table>
<thead>
<tr>
<th></th>
<th>Leafs</th>
<th>Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of vehicles</td>
<td>3,696</td>
<td>1,006</td>
</tr>
<tr>
<td>Number of Trips</td>
<td>956,366</td>
<td>362,848</td>
</tr>
<tr>
<td>Distance (million miles)</td>
<td>6.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Average (Ave) trip distance</td>
<td>6.9 mi</td>
<td>8.1 mi</td>
</tr>
<tr>
<td>Ave distance per day</td>
<td>29.2 mi</td>
<td>40.4 mi</td>
</tr>
<tr>
<td>Ave number (#) trips between charging events</td>
<td>3.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Ave distance between charging events</td>
<td>26.3 mi</td>
<td>28.1 mi</td>
</tr>
<tr>
<td>Ave # charging events per day</td>
<td>1.1</td>
<td>1.4</td>
</tr>
</tbody>
</table>

* Note that per day data is only for days a vehicle is driven
EV Project – **Leaf** Operations Trends

- Some decreases in average miles per day and average miles per charge

<table>
<thead>
<tr>
<th>Number of Leafs reporting each quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
</tr>
</tbody>
</table>

![Nissan Leaf Driver Operations Behavior Graph](image-url)
EV Project – Leaf Charging Location Trends

- 9% increase in home charging and 10% decrease in non-home charging as a revenue model is introduced

<table>
<thead>
<tr>
<th>Number of Leafs reporting each quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
</tr>
</tbody>
</table>
EV Project – Volt Operations Trends

- Average quarterly increases in miles per day and per charge have decreased most recently

<table>
<thead>
<tr>
<th>Number of Volts reporting each quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
</tr>
</tbody>
</table>
EV Project – Volt Charging Location Trends

- 3% increase in home charging and 1% decrease in non-home charging as a revenue model is introduced

![Chevy Volt Driver Charging Behavior Graph](image)

<table>
<thead>
<tr>
<th>Number of Volts reporting each quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
</tr>
</tbody>
</table>
EV Project – Residential EVSE L2 Use Trends

- Continued gradual increases in time vehicles connected per charge and in AC KWh transferred per charge event

![Graph showing residential EVSE infrastructure use trends]

<table>
<thead>
<tr>
<th>Number of Residential EVSE Level reporting each quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
</tr>
</tbody>
</table>

Residential EVSE Level 2 = R2, Weekend = WE, Weekday = WD
EV Project – Public EVSE L2 Use Trends

- Increases in kWh per charge and time energy is drawn
- Average time vehicle connected appears to be rising this last quarter

Non-Residential EVSE Infrastructure Use Trends

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Public EVSE Level reporting each quarter</td>
<td>170</td>
<td>438</td>
<td>955</td>
<td>1483</td>
<td>1818</td>
<td>1991</td>
</tr>
</tbody>
</table>

Public EVSE Level 2 = P2, Weekend = WE, Weekday = WD
EV Project – EVSE Infra. Summary Report

- Percent of public L2 EVSE deployed is now 30% of all L2 EVSE

- As measured by kWh use and number of charge events, revenue model may be decreasing public L2 EVSE use
EV Project – Public Level 2 EVSE Usage

Contribution of Car Sharing Fleets is significant

<table>
<thead>
<tr>
<th>All territories</th>
<th>Car sharing fleet</th>
<th>Nissan Leaf</th>
<th>Chevrolet Volt</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicles Charged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of charging events</td>
<td>25%</td>
<td>21%</td>
<td>5%</td>
<td>49%</td>
</tr>
<tr>
<td>Percent of kWh consumed</td>
<td>38%</td>
<td>17%</td>
<td>3%</td>
<td>41%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>San Diego</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicles Charged</td>
<td>300 Car2Go fleet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of charging events</td>
<td>59%</td>
<td>16%</td>
<td>2%</td>
<td>23%</td>
</tr>
<tr>
<td>Percent of kWh consumed</td>
<td>72%</td>
<td>11%</td>
<td>1%</td>
<td>16%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oregon (Car2Go in Portland)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicles Charged</td>
<td>30 Car2Go fleet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of charging events</td>
<td>5%</td>
<td>29%</td>
<td>4%</td>
<td>61%</td>
</tr>
<tr>
<td>Percent of kWh consumed</td>
<td>11%</td>
<td>27%</td>
<td>4%</td>
<td>58%</td>
</tr>
</tbody>
</table>
EV Project – EVSE Infra. Summary Report

- National Residential and Public Level 2 Weekday EVSE 4th Quarter 2012

- Residential and public connect time and energy use are fairly opposite profiles. Note different scales

![National Residential Connect Time](image1)

![National Public Connect Time](image2)

![National Residential Demand](image3)

![National Public Demand](image4)
EV Project – EVSE Infra. Summary Report

• Residential Level 2 Weekday EVSE 4th Quarter 2012
• San Diego and San Francisco, with residential L2 TOU rates, are similar to national and other regional EVSE connect profiles

San Diego

Los Angeles

San Francisco

Washington State
EV Project – EVSE Infra. Summary Report

- Residential Level 2 Weekday EVSE 3rd Quarter 2012
- TOU kWh rates in San Diego and San Francisco clearly impact when vehicle charging start times are set
EV Project – EVSE Infra. Summary Report

- DC Fast Chargers Weekday 4th Quarter 2012
- 54 DCFCs connected and demand profiles

Weekday Connected Profile

- 1.9 average charge events per day per DCFC
- Leafs 39% charge events and 41% energy
- Unknowns other charge events and energy

Weekday Demand Profile

- 18.8 minutes average time connected
- 18.8 minutes average time drawing energy
- 7.0 kWh average energy consumed per charge
L2 Access Fees Structure

• 4th Quarter is first widespread implementation of simple and low cost access fees

• Blink member
 – Affiliate credit card with free Blink RFID “In Card”
 – Level 2 access fee of $1.00 per hour of connect time

• Guest - No Blink RFID “In Card” required
 – Guest Code using quick reservation code or website
 – Level 2 access fee of $2.00 per hour of connect time

• Future pricing
 – Pricing to reflect regional electricity rates
 – Cover electricity costs in all cases
DC Fast Charge (DCFC) Fees Structure

- Encourage DCFC use with initial free charging
- Implement DCFC access fees by region in 1st Quarter 2013 with beta testing currently underway
- Initial fee structure simple and low cost
 - Accommodate varying vehicle charge rates
 - Accommodate select limitation of charging output power
- Blink member
 - $25 per month unlimited use or $5.00 per session
- Guest
 - $8.00 per session
Residential Lessons Learned

- Permit timeliness has not been a problem
- Majority are over-the-counter
- Permit fees vary significantly - $7.50 to $500.00

<table>
<thead>
<tr>
<th>Region</th>
<th>Count of Permits</th>
<th>Average Permit Fee</th>
<th>Minimum Permit Fee</th>
<th>Maximum Permit Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>66</td>
<td>$96.11</td>
<td>$26.25</td>
<td>$280.80</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>109</td>
<td>$83.99</td>
<td>$45.70</td>
<td>$218.76</td>
</tr>
<tr>
<td>San Diego</td>
<td>496</td>
<td>$213.30</td>
<td>$12.00</td>
<td>$409.23</td>
</tr>
<tr>
<td>San Francisco</td>
<td>401</td>
<td>$147.57</td>
<td>$29.00</td>
<td>$500.00</td>
</tr>
<tr>
<td>Tennessee</td>
<td>322</td>
<td>$47.15</td>
<td>$7.50</td>
<td>$108.00</td>
</tr>
<tr>
<td>Oregon</td>
<td>316</td>
<td>$40.98</td>
<td>$12.84</td>
<td>$355.04</td>
</tr>
<tr>
<td>Washington</td>
<td>497</td>
<td>$78.27</td>
<td>$27.70</td>
<td>$317.25</td>
</tr>
</tbody>
</table>
Residential Lessons Learned

- **Average residential installation cost ≈$1,375**
- **Individual installations vary widely**
- **Some user bias to lower costs**

<table>
<thead>
<tr>
<th>Marlets In Ascending Order Of Residential Installation Cost</th>
<th>Number of Installations</th>
<th>Average Installation Cost</th>
<th>Variation From Project Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tennessee (entire State)</td>
<td>542</td>
<td>$1,113.07</td>
<td>-19.0%</td>
</tr>
<tr>
<td>Arizona (Phoenix & Tucson)</td>
<td>357</td>
<td>$1,148.88</td>
<td>-16.4%</td>
</tr>
<tr>
<td>Washington DC</td>
<td>3</td>
<td>$1,197.44</td>
<td>-12.9%</td>
</tr>
<tr>
<td>Oregon (Portland, Eugene, Coralvls & Salem)</td>
<td>465</td>
<td>$1,229.06</td>
<td>-10.6%</td>
</tr>
<tr>
<td>Washington (Seattle & Olympia)</td>
<td>730</td>
<td>$1,289.56</td>
<td>-6.2%</td>
</tr>
<tr>
<td>Maryland</td>
<td>39</td>
<td>$1,311.75</td>
<td>-4.5%</td>
</tr>
<tr>
<td>Washington</td>
<td>80</td>
<td>$1,321.36</td>
<td>-3.8%</td>
</tr>
<tr>
<td>Virginia</td>
<td>38</td>
<td>$1,341.01</td>
<td>-2.4%</td>
</tr>
<tr>
<td>San Fransisco</td>
<td>1254</td>
<td>$1,386.13</td>
<td>0.9%</td>
</tr>
<tr>
<td>Texas (metro Houston & Dallas)</td>
<td>128</td>
<td>$1,422.77</td>
<td>3.5%</td>
</tr>
<tr>
<td>San Diego</td>
<td>726</td>
<td>$1,593.91</td>
<td>16.0%</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>415</td>
<td>$1,791.64</td>
<td>30.6%</td>
</tr>
</tbody>
</table>
Commercial Lessons Learned

- **ADA significantly drives cost**
 - Accessible charger
 - Van accessible parking
 - Accessible electric and passage routes to facility

- **Permit fees and delays can are significant**
 - Load studies
 - Zoning reviews
Commercial Lessons Learned

- Commercial permits range $14 to $821

<table>
<thead>
<tr>
<th>Region</th>
<th>Count of Permits</th>
<th>Average Permit Fee</th>
<th>Minimum Permit Fee</th>
<th>Maximum Permit Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>72</td>
<td>$228</td>
<td>$35</td>
<td>$542</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>17</td>
<td>$195</td>
<td>$67</td>
<td>$650</td>
</tr>
<tr>
<td>San Diego</td>
<td>17</td>
<td>$361</td>
<td>$44</td>
<td>$821</td>
</tr>
<tr>
<td>Texas</td>
<td>47</td>
<td>$150</td>
<td>$37</td>
<td>$775</td>
</tr>
<tr>
<td>Tennessee</td>
<td>159</td>
<td>$71</td>
<td>$19</td>
<td>$216</td>
</tr>
<tr>
<td>Oregon</td>
<td>102</td>
<td>$112</td>
<td>$14</td>
<td>$291</td>
</tr>
<tr>
<td>Washington</td>
<td>33</td>
<td>$189</td>
<td>$57</td>
<td>$590</td>
</tr>
</tbody>
</table>
Commercial Lessons Learned

- Demand and energy costs are significant for some utilities
 - 25¢/kWh
 - $25/kW
- Some utilities offer commercial rates without demand charges
- Others incorporate 20 kW to 50 kW demand thresholds
- Nissan Leaf is demand charge free in some electric utility service territories

<table>
<thead>
<tr>
<th>No Demand Charges - Nissan Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA Pacific Gas & Electric</td>
</tr>
<tr>
<td>City of Palo Alto</td>
</tr>
<tr>
<td>Alameda Municipal Power</td>
</tr>
<tr>
<td>Silicon Valley Power</td>
</tr>
<tr>
<td>AZ Tucson Electric Power</td>
</tr>
<tr>
<td>OR Eugene Water & Electric Board</td>
</tr>
<tr>
<td>Lane Electric Co-op</td>
</tr>
<tr>
<td>TN Middle Tennessee Electric</td>
</tr>
<tr>
<td>Duck River Electric</td>
</tr>
<tr>
<td>Harriman Utility Board</td>
</tr>
<tr>
<td>Athens Utility Board</td>
</tr>
<tr>
<td>Cookeville Electric Department</td>
</tr>
<tr>
<td>Cleveland Utilities</td>
</tr>
<tr>
<td>Nashville Electric Service</td>
</tr>
<tr>
<td>EPB Chattanooga</td>
</tr>
<tr>
<td>Lenoir City Utility Board</td>
</tr>
<tr>
<td>Volunteer Electric Cooperative</td>
</tr>
<tr>
<td>Murfreesboro Electric</td>
</tr>
<tr>
<td>Sequachee Valley Electric Cooperative</td>
</tr>
<tr>
<td>Knoxville Utility Board</td>
</tr>
<tr>
<td>Maryville</td>
</tr>
<tr>
<td>Fort Loudoun Electric</td>
</tr>
<tr>
<td>Memphis Light Gas and Water Division</td>
</tr>
</tbody>
</table>
Commercial Lessons Learned

- **Recurring Nissan Leaf DC fast charge demand charges are significant in many utility service territories**

<table>
<thead>
<tr>
<th>Utility Demand Charges - Nissan Leaf</th>
<th>Cost/mo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA Glendale Water and Power</td>
<td>$16.00</td>
</tr>
<tr>
<td>Hercules Municipal Utility:</td>
<td>$377.00</td>
</tr>
<tr>
<td>Los Angeles Department of Water and Power</td>
<td>$700.00</td>
</tr>
<tr>
<td>Burbank Water and Power</td>
<td>$1,052.00</td>
</tr>
<tr>
<td>San Diego Gas and Electric</td>
<td>$1,061.00</td>
</tr>
<tr>
<td>Southern California Edison</td>
<td>$1,460.00</td>
</tr>
<tr>
<td>AZ TRICO Electric Cooperative</td>
<td>$180.00</td>
</tr>
<tr>
<td>The Salt River Project</td>
<td>$210.50</td>
</tr>
<tr>
<td>Arizona Public Service</td>
<td>$483.75</td>
</tr>
<tr>
<td>OR Pacificorp</td>
<td>$213.00</td>
</tr>
<tr>
<td>WA Seattle City Light</td>
<td>$61.00</td>
</tr>
</tbody>
</table>
ChargePoint America ARRA Project

- Conducted by Coulomb
- Project to Sept. 2012
- 3,799 EVSE installed and reporting data
 - 1,743 Residential
 - 179 Private / commercial
 - 1,868 Public
 - 9 unknown
- 553,439 charge events
- 3,856 AC MWh
ChargePoint America ARRA Project

- July – Sept. 2012 data
- 3,361 units
- Percent time vehicle connected
 - Residential 45%
 - Private/com 28%
 - Public 8%
- Percent time drawing power
 - Residential 9%
 - Private/com 6%
 - Public 2%
- EVSE data only
• Public is open access. Commercial are limited access
• Public and commercial reflect at work charging
• Residential reflects end of day return-to-home charging
• Note difference in scales
EVSE Testing

- AC energy consumption at rest and during Volt Charging benchmarked
- Steady state charge efficiency benchmarked

Most EVSE consume 13 W or less at rest. Higher watt use tied to more EVSE features

Most EVSE under 30 W during charge

Most EVSE 99+% efficient during steady state charge of a Volt
Hasetec DC Fast Charging Nissan Leaf

- 53.1 AC kW peak grid power
- 47.1 DC kW peak charge power to Leaf energy storage system (ESS)
- 15.0 Grid AC kWh and 13.3 DC kWh delivered to Leaf ESS
- 88.7% Overall charge efficiency (480VAC to ESS DC)
Conductive System Benchmarking

Entire report can be found at: http://avt.inel.gov/pdf/phev/EfficiencyResultsChevroletVoltOnBoardCharger.pdf
Additional Battery Testing

- Initiated field and lab DC Fast Charge and Level 2 charging study of impacts on battery life in 6 Nissan Leafs
 - Two vehicles driven on road and L2 charged
 - Two driven identical routes DCFC charged
 - One L2 and 1 DCFC in battery lab
 - At 10k miles each vehicle similar minimal capacity fade

- Battery mule test vehicle provides field testing of traction battery packs at any power and efficiency level
 - Current test pack is EnerDel Li-ion 345 V rated 70 Ah
 - 8,600 miles of on-road driving and L2 charging has resulted in 10% capacity fade (63.2 Ah to 56.8 Ah) per EVPC and C/3 lab tests
Summary

- EV Project vehicles connected much longer than needed to recharge - opportunities to shift charging times
- Significant residential Level 2 EV Project charging occurs off-peak with charge-starts at midnight per TOU rates indicates consumers are price sensitive
- Revenue models for public charging are currently being introduced – long term impacts?
- Only about 60% of EV Project data collected to date
- DCFC charge events have significant demand impacts but this is an electric utility policy decision
- How, where, when we measure EVSE and vehicle system charging efficiencies results in significantly different results
Acknowledgement
This work is supported by the U.S. Department of Energy’s EERE Vehicle Technologies Program

More Information
http://avt.inl.gov

This presentation will be posted in the publications section of the above website

INL/MIS-13-28182