Idaho National Laboratory

U.S. Department of Energy's Vehicle Technologies Program

NYC TLC - Plug-in Electric Vehicle Infrastructure and Usage Information

Jim Francfort Idaho National Laboratory

NYC Taxi and Limousine Commission New York, New York February 2013

This presentation does not contain any proprietary or sensitive information

- U.S. Department of Energy (DOE) laboratory
- 890 square mile site with 4,000 staff
- **Support DOE's strategic goal:**
 - Increase U.S. energy security and reduce the nation's dependence on foreign oil
- **Multi-program DOE laboratory**
 - Nuclear Energy
 - Fossil, Biomass, Wind, Geothermal and Hydropower **Energy**
 - Advanced Vehicles and Battery Development
 - Homeland Security and Cyber Security

AVTA Participants

- The Advanced Vehicle Testing Activity (AVTA) is the U.S. Department of Energy, Vehicle Technologies Program's (VTP) singular field, tract, and laboratory based source of testing light-duty whole vehicle systems and subsystems
 - Idaho National Laboratory manages the AVTA for VTP
 - ECOtality provides testing support via a competitively bid NETL (National Energy Testing Laboratory) contract
- For the EV Project, ECOtality is the project lead and INL provides data collection, analysis and dissemination support
- Test partners include electric utilities, Federal, state and local government agencies, private companies, and individual vehicle owners

AVTA Goals

- The AVTA goals
 - Petroleum reduction and energy security
 - Benchmark technologies that are developed via DOE research investments
- Provide benchmark data to DOE, National Laboratories (ANL, NREL, ORNL, PNNL), Federal Agencies (DOD, DOI, DOT, EPA, USPS), technology modelers, R&D programs, vehicle manufacturers (via USCAR's VSATT, EESTT, GITT), and target and goal setters
- Assist fleet managers, via Clean Cities, FEMP and industry gatherings, in making informed vehicle and infrastructure deployment and operating decisions

Vehicle / Infrastructure Testing Experience

- 82 million test miles accumulated on 11,200 electric drive vehicles representing 115 models. 1 million miles / week
- EV Project: 7,700 Leafs, Volts and Smart EVs, 10,076 EVSE and DC Fast Chargers (DCFC), 64 million test miles
- ChargePoint: 3,908 EVSE reporting 761,000 charge events
- PHEVs: 14 models, 430 PHEVs, 4 million test miles
- EREVs: 1 model, 150 EREVs, 900,000 test miles
- HEVs: 21 models, 52 HEVs, 6.2 million test miles
- Micro hybrid (stop/start) vehicles: 3 models, 7 MHVs, 509,000 test miles
- NEVs: 24 models, 372 NEVs, 200,000 test miles
- BEVs: 47 models, 2,000 BEVs, 5 million test miles
- UEVs: 3 models, 460 UEVs, 1 million test miles
- Other testing includes hydrogen ICE vehicle and infrastructure testing

 Note: all 4th guarter 2012 data is

preliminary and subject to change

INL Vehicle/EVSE Data Management Process

INL Data Management System - Push

(Nissan, GM, Chrysler, Coulomb, Aerovironment)

INL Data Management System - Pull

(ECOtality, Ford, conversion PHEVs, HEVs, HICEs)

Data Collection, Security and Protection

- All vehicle, EVSE, and PII raw data is legally protected by NDAs (Non Disclosure Agreements) or CRADAs (Cooperative Research and Development Agreements)
 - Limitations on how proprietary and personally identifiable information can be stored and distributed
 - Raw data, in both electronic and printed formats, is not shared with DOE in order to avoid exposure to FOIA
 - Vehicle and EVSE data collection would not occur unless testing partners trust INL would strictly adhere to NDAs and CRADAs
 - Raw data cannot be legally distributed by INL

EV Project Goal, Locations, Participants, and Reporting

- Goal: Build and study mature charging infrastructures and take the lessons learned to support the future streamlined deployment of grid-connected electric drive vehicles
- ECOtality is the EV Project lead, with INL, Nissan and Onstar/GM as the prime partners, with more than 40 other partners such as electric utilities
- EV Project reporting requires INL to blend three distinct data streams from ECOtality, Nissan and Onstar/GM
- 40 different EV Project reports are generated quarterly for the general public, DOE, ECOtality, project participants, industry, regulatory organizations, as well as per special requests

EV Project – EVSE Data Parameters Collected per Charge Event

- Data from ECOtality's Blink EVSE network
- Connect and Disconnect Times
- Start and End Charge Times
- Maximum Instantaneous Peak Power
- Average Power
- Total energy (kWh) per charging event
- Rolling 15 Minute Average Peak Power
- Date/Time Stamp
- Unique ID for Charging Event
- Unique ID Identifying the EVSE
- And other non-dynamic EVSE information (GPS, ID, type, contact info, etc.)

EV Project – Vehicle Data Parameters Collected per Start/Stop Event

- Data is received via telematics providers from Chevrolet Volts and Nissan Leafs
- Odometer
- Battery state of charge
- Date/Time Stamp
- Vehicle ID
- Event type (key on / key off)
- GPS (longitude and latitude)
- Recorded for each key-on and key-off event

EV Project Vehicles / Miles, end of 2012

- 7,346 vehicles reporting data
 - 5,801 Leafs. 79%
 - 1,215 Volts. 17%
 - 330 Smart EVs. 4%
- 60.1 million total miles
- 150,000 test miles per day

EV Project EVSE Deployed / Use end of 2012

- 9,493 total EVSE
 - 6,864 (72%)
 Residential EVSE
 2,575 (27%) non-residential EVSE
 - 54 (1%) DCFC
- 1.7 million charge events
 - 1,579,894 (92%)Residential EVSE
 - 131,298 (8%) nonresidential EVSE
 - 8,820 (1%) DCFC

EV Project Charge Energy (MWh) end of 2012

- 14,418 MWh total electricity charged
 - 13,328 MWh
 (92%) residential
 - 1,029 MWh (7%) non-residential
 - 61 MWh (0.4%)DCFC 0

- Vehicle efficiency cannot be accurately calculated using total vehicle miles and total energy
 - Non-EV Project vehicles sometimes charge at EV Project EVSE
 - EV Project vehicles may charge at 110V or other 240V non-EV Project EVSE

EV Project Overview Report 4th Quarter 2012

- San Francisco has 17% of all EVSE 30% of all Leafs
- Washington DC has 16% and Texas has 18% of all Volts

EV Project – National Data

4rd quarter 2012 Data Only

		<u>Leafs</u>	<u>Volts</u>
•	Number of vehicles	3,762	1,021
•	Number of Trips	969,853	369,118
•	Distance (million miles)	6.7	3.0
•	Average (Ave) trip distance	6.9 mi	8.1 mi
•	Ave distance per day	29.2 mi	40.5 mi
•	Ave number (#) trips between charging events	3.8	3.5
•	Ave distance between charging events	26.3 mi	28.2 mi
•	Ave # charging events per day	1.1	1.4

^{*} Note that per day data is only for days a vehicle is driven

EV Project – Leaf Operations Trends

Some decreases in average miles per day and average miles per charge

EV Project – Leaf Charging Location Trends

 9% increase in home charging and 10% decrease in nonhome charging as a revenue model is introduced

EV Project – Volt Operations Trends

 Average quarterly increases in miles per day and per charge have decreased most recently

EV Project – Volt Charging Location Trends

 3% increase in home charging and 1% decrease in nonhome charging as a revenue model is introduced

Number of Volts reporting each quarter with matched EVSE data							
45	317	408	809	1021			

EV Project – Residential EVSE L2 Use Trends

 Continued gradual increases in time vehicles connected per charge and in AC KWh transferred per charge event

EV Project – Public EVSE L2 Use Trends

- Increases in kWh per charge and time energy is drawn
- Average time vehicle connected appears to be rising this last quarter

Number of P					
170	438	955	1483	1818	1988

Percent of public L2 EVSE deployed is now 30% of all L2

EVSE

 As measured by kWh use and number of charge events, revenue model may be decreasing public L2 EVSE use

3rd 2011 4th 2011 1st 2012 2nd 2012 3rd 2012 4th 2012

EV Project Public L2 EVSE Usage end of 2012

Contribution of Car Sharing Fleets is significant

All territories				
Vehicles Charged	Car sharing fleet	Nissan Leaf	Chevrolet Volt	Unknown
Percent of charging events	25%	21%	5%	49%
Percent of kWh consumed	38%	17%	3%	41%
San Diego				
Vehicles Charged	300 Car2Go fleet	Nissan Leaf	Chevrolet Volt	Unknown
Percent of charging events	59%	16%	2%	23%
Percent of kWh consumed	72% 11%		1%	16%
Oregon (Car2Go in Portla	nd)			
Vehicles Charged	30 Car2Go fleet	Nissan Leaf	Chevrolet Volt	Unknown
Percent of charging events	5%	29%	4%	61%
Percent of kWh consumed	11%	27%	4%	58%

EV Project – EVSE Infra. Summary Report National Residential and Public Level 2 Weekday EVSE

- 4th Quarter 2012
- Residential and public connect time and energy use are fairly opposite profiles. Note different scales
 National Residential Connect Time
 National Public Conne

National Residential Demand

National Public Connect Time

National Public Demand

- Residential Level 2 Weekday EVSE 4th Quarter 2012
- San Diego and San Francisco, with residential L2 TOU rates, are similar to national and other regional EVSE connect profiles

San Diego

San Francisco

Los Angeles

Washington State

- Residential Level 2 Weekday EVSE 4rd Quarter 2012
- TOU kWh rates in San Diego and San Francisco clearly impact when vehicle charging start times are set

San Diego

Weekday

1.200
0.900
0.600
0.300
0.000
12:00
18:00
0:00
Time of Day

San Francisco

Weekday

1.600

0.800

0.400

0.000

Time of Day

- DC Fast Chargers Weekday 4th Quarter 2012
- 54 DCFCs connected and demand profiles

Weekday Connected Profile

Weekday Demand Profile

- 1.9 average charge events per day per DCFC
- Leafs 43% charge events and 45% energy
- Unknowns other charge events and energy
- 19.3 minutes average time connected
- 19.3 minutes average time drawing energy
- 7.2 kWh average energy consumed per charge

L2 Access Fees Structure

- 4th Quarter is first widespread implementation of simple and low cost access fees
- Blink member
 - Affiliate credit card with free Blink RFID "In Card"
 - Level 2 access fee of \$1.00 per hour of connect time
- Guest No Blink RFID "In Card" required
 - Guest Code using quick reservation code or website
 - Level 2 access feel of \$2.00 per hour of connect time
- Future pricing
 - Pricing to reflect regional electricity rates
 - Cover electricity costs in all cases

DC Fast Charge (DCFC) Fees Structure

- Encourage DCFC use with initial free charging
- Implement DCFC access fees by region in 1st Quarter 2013 with beta testing currently underway
- Initial fee structure simple and low cost
 - Accommodate varying vehicle charge rates
 - Accommodate select limitation of charging output power
- Blink member
 - \$25 per month unlimited use or \$5.00 per session
- Guest
 - \$8.00 per session

Residential Lessons Learned

- Permit timeliness has not been a problem
- Majority are over-the-counter
- Permit fees vary significantly- \$7.50 to \$500.00

Region	Count of Permits	Average Permit Fee	Minimum Permit Fee	Maximum Permit Fee
Arizona	66	\$96.11	\$26.25	\$280.80
Los Angeles	109	\$83.99	\$45.70	\$218.76
San Diego	496	\$213.30	\$12.00	\$409.23
San Francisco	401	\$147.57	\$29.00	\$500.00
Tennessee	322	\$47.15	\$7.50	\$108.00
Oregon	316	\$40.98	\$12.84	\$355.04
Washington	497	\$78.27	\$27.70	\$317.25

Residential Lessons Learned

- Average residential installation cost ≈\$1,375
- Individual installations vary widely
- Some user bias to lower costs

Marlets In Ascending Order Of Residential Installation Cost	Number of Installations	Average Installation Cost	Variation From Project Average
Tennessee (entire State)	542	\$ 1,113.07	-19.0%
Arizona (Phoenix & Tucson)	357	\$ 1,148.88	-16.4%
Washington DC	3	\$ 1,197.44	-12.9%
Oregon (Portland, Eugene, Coralvis & Salem)	465	\$ 1,229.06	-10.6%
Washington (Seattle & Olympia)	730	\$ 1,289.56	-6.2%
Maryland	39	\$ 1,311.75	-4.5%
Washington	80	\$ 1,321.36	-3.8%
Virginia	38	\$ 1,341.01	-2.4%
San Fransisco	1254	\$ 1,386.13	0.9%
Texas (metro Houston & Dallas)	128	\$ 1,422.77	3.5%
San Diego	726	\$ 1,593.91	16.0%
Los Angeles	415	\$ 1,794.64	30.6%

- ADA significantly drives cost
 - Accessible charger
 - Van accessible parking
 - Accessible electric and passage routes to facility
- Permit fees and delays can are significant
 - Load studies
 - Zoning reviews

Commercial permits range \$14 to \$821

Region	Count of Permits	Average Permit Fee	Minimum Permit Fee	Maximum Permit Fee
Arizona	72	\$228	\$35	\$542
Los Angeles	17	\$195	\$67	\$650
San Diego	17	\$361	\$44	\$821
Texas	47	\$150	\$37	\$775
Tennessee	159	\$71	\$19	\$216
Oregon	102	\$112	\$14	\$291
Washington	33	\$189	\$57	\$590

- Demand and energy costs are significant for some utilities
 - 25¢/kWh
 - \$25/kW
- Some utilities offer commercial rates without demand charges
- Others incorporate 20 kW to 50 kW demand thresholds
- Nissan Leaf is demand charge free in some electric utility service territories

N	o Demand Charges - Nissan Leaf						
CA	Pacific Gas & Electric						
	City of Palo Alto						
	Alameda Municipal Power						
	Silicon Valley Power						
ΑZ	Tucson Electric Power						
OR	Eugene Water & Electric Board						
	Lane Electric Co-op						
TN	Middle Tennessee Electric						
	Duck River Electric						
	Harriman Utility Board						
	Athens Utility Board						
	Cookeville Electric Department						
	Cleveland Utilities						
	Nashville Electric Service						
	EPB Chattanooga						
	Lenoir City Utility Board						
	Volunteer Electric Cooperative						
	Murfreesboro Electric						
	Sequachee Valley Electric Cooperative						
	Knoxville Utility Board						
	Maryville						
	Fort Loudoun Electric						
	Memphis Light Gas and Water Division						

 Recurring Nissan Leaf DC fast charge demand charges are significant in many utility service territories

Util	Cost/mo.			
CA	Glendale Water and Power	\$	16.00	
	Hercules Municipal Utility:	\$	377.00	
	Los Angeles Department of Water and Power	\$	700.00	
	Burbank Water and Power	\$	1,052.00	
	San Diego Gas and Electric			
	Southern California Edison	\$	1,460.00	
AZ	TRICO Electric Cooperative	\$	180.00	
	The Salt River Project	\$	210.50	
	Arizona Public Service	\$	483.75	
OR	Pacificorp	\$	213.00	
WA	Seattle City Light	\$	61.00	

ChargePoint [®]America Vehicle Charging Infrastructure Summary Report

Project Status to Date through: June 2012

Charging Unit - By State	Residential	Private Commercial	Public	Not Specified	Charging Units Installed to Date*	Number of Charging Events Performed ^a	Electricity Consumed (AC MWh)
California	791	39	518	3	1,351	213,758	1,487.7
Connecticut	11	4			11	2,569	15.1
District of Columbia		16	16		32	718	5.4
Florida	43	10	228	2	283	9,323	55.2
Maryland	18	7	46		71	5,956	37.9
Massachusetts	23	7	74		104	4,133	35.5
Michigan	252	14	172		438	60,436	407.1
New Jersey	51	2	17		70	15,397	95.7
New York	23	88	102		213	17,401	139.6
Texas	51	9	227		287	17,759	114.4
Virginia	23	17	43		83	10,061	65.0
Washington	12	7	123		142	8,153	50.0
Total	1,298	216	1,566	5	3,085	365,664	2,508.7

ChargePoint America Charging Unit Distribution Project to Date

² A charging event is defined as the period when a vehicle is connected to a charging unit, during which period

ChargePoint America ARRA Project

- Conducted by Coulomb
- Project to Dec. 2012
- 3,908 EVSE installed and reporting data
 - 1,763 Residential
 - 193 Private / commercial
 - 1,940 Public
 - 12 unknown
- 760,995 charge events
- 5,359 AC MWh

ChargePoint America ARRA Project

- Oct Dec 2012 data
- 3,541 units
- Percent time vehicle connected
 - Residential 47%
 - Private/com 24%
 - Public 9%
- Percent time drawing power
 - Residential 9%
 - Private/com 5%
 - Public 4%
- EVSE data only

ChargePoint America: Oct – Dec. 2012

Public Connect Time

Commercial Connect Time

Residential Connect Time

Public Demand

Commercial Demand

Residential Demand

- Public is open access. Commercial are limited access
- Public and commercial reflect at work charging
- Residential reflects end of day return-to-home charging
- Note difference in scales

EVSE Testing

- AC energy consumption at rest and during Volt Charging benchmarked
- Steady state charge efficiency benchmarked

- Most EVSE consume
 13 W or less at rest.
 Higher watt use tied to more EVSE features
- Most EVSE under 30 W during charge
- Most EVSE 99+%
 efficient during steady
 state charge of a Volt
 A

Hasetec DC Fast Charging Nissan Leaf

- 53.1 AC kW peak grid power
- 47.1 DC kW peak charge power to Leaf energy storage system (ESS)
- 15.0 Grid AC kWh and 13.3 DC kWh delivered to Leaf ESS
- 88.7% Overall charge efficiency (480VAC to ESS DC)

Conductive System Benchmarking

Entire report can be found at: http://avt.inel.gov/pdf/phev/EfficiencyResultsChevroletVoltOnBoardCharger.pdf

Additional Testing

- Initiated field and lab DC Fast Charge and Level 2 charging study of impacts on battery life in 6 Nissan Leafs
 - Two vehicles driven on road and L2 charged
 - Two driven identical routes DCFC charged
 - One L2 and 1 DCFC in battery lab
 - At 10k miles each vehicle similar minimal capacity fade
- INL conducting with the NFPA and US DOT, PEV traction battery fire demonstrations and suppression project
- INL initiated ~400 New York EVSE data collection with NYSERDA, NYPA, Port Authority of NY/NJ, and Energetics
- INL initiated DOE's wireless charging test program

Summary

- EV Project vehicles connected much longer than needed to recharge - opportunities to shift charging times
- Significant residential Level 2 EV Project charging occurs off-peak with charge-starts at midnight per TOU rates indicates consumers are price sensitive
- Revenue models for public charging are currently being introduced – long term impacts?
- Only about 60% of EV Project data collected to date
- DCFC charge events have significant demand impacts but this is an electric utility policy decision
- How, where, when we measure EVSE and vehicle system charging efficiencies results in significantly different results

Acknowledgement

This work is supported by the U.S. Department of Energy's EERE Vehicle Technologies Program

More Information

http://avt.inl.gov

This presentation will be posted in the publications section of the above website

INL/MIS-13-28453