daho National Laboratory

U.S. Department of Energy's Vehicle Technologies Program

INL Update: The EV Project and Other Light-Duty Electric Drive Vehicle and Infrastructure Activities @ VSATT 2012

Jim Francfort / Barney Carlson

VSATT – ORNL, Knoxville, TN November 7, 2012

This presentation does not contain any proprietary or sensitive information

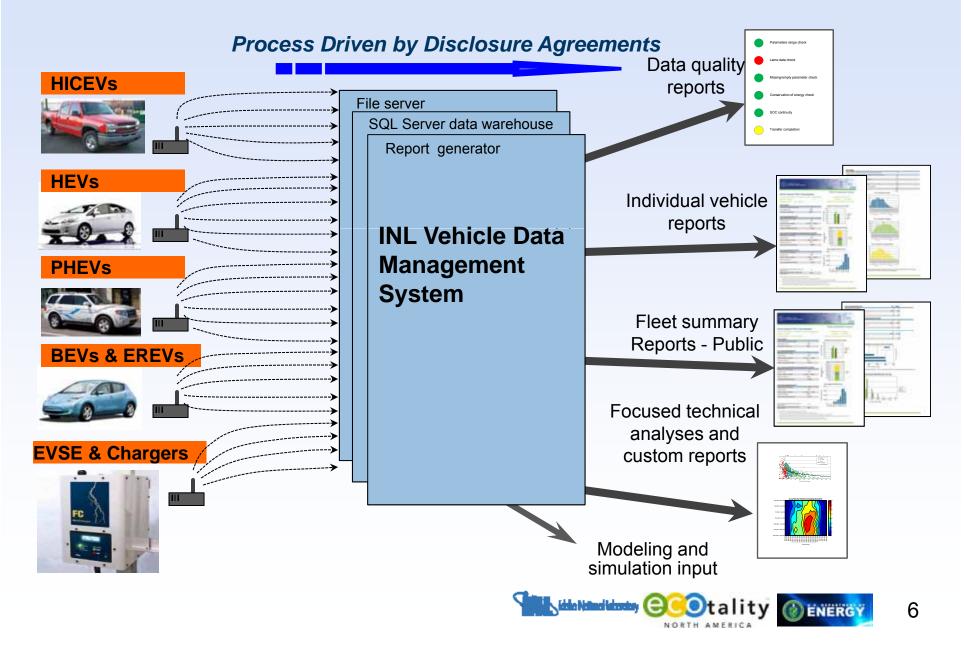
Outline

- Participants
- Goals
- Testing experience
- Data processes and data security
- EV Project
 - Description and data parameters and project status
 - Leaf, Volt, and EVSE benchmarking results including demand and DCFC peak issues
 - Lessons learned, summary and future
- Other ARRA and TADA data collection activities
- DC Fast Charge battery impacts
- EVSE, DC FC and wireless activities
- Vehicle Mass impacts on fuel use
- Battery mule status
- Other

AVTA Participants

- INL is responsible to DOE for the light-duty vehicle portion of the Advanced Vehicle Testing Activity (AVTA)
- ECOtality provides testing support to the AVTA via a competitively bid contract through NETL (National Energy Testing Laboratory)
- Test partners include electric utilities, Federal, state and local government agencies, private companies, infrastructure and vehicle manufacturers
- Leverage DOE funding within DOE, other Federal Fleets, and with all external partners

AVTA Goals


- The AVTA goals
 - Petroleum reduction and energy security
 - Benchmark technologies that are developed via DOE research investments
- The AVTA focuses on:
 - Real world field, test track, and laboratory testing of grid connected, electric drive vehicles and subsystems
 - Advanced energy storage systems
 - Charging infrastructure performance and use
- Confuse people with facts via structured benchmark testing
- Provide benchmark data to National Laboratories, Federal Agencies (DOD, DOI, DOT, EPA, USPS), technology modelers, fleet managers, and vehicle manufacturers to support informed vehicle and infrastructure deployment and operating decisions

Vehicle / Infrastructure Testing Experience

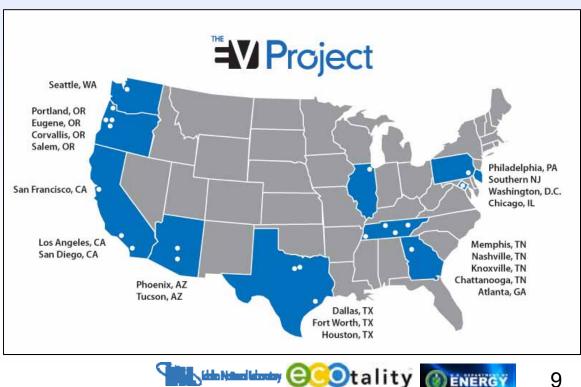
- 66 million test miles accumulated on 9,600 electric drive vehicles representing 110+ models, and 11,000+ EVSE
- Currently, 17,500 vehicles and EVSE provide 125,000 miles and 5,200 charging events of data to INL daily
- EV Project: 6,150 Leafs, Volts and Smart EVs, 7,971 EVSE (electric vehicle supply equipment), 48 million test miles
- PHEVs: 14 models, 430 PHEVs, 4 million test miles
- EREVs: 1 model, 150 EREVs, 900,000 test miles
- HEVs: 21 models, 52 HEVs, 6.2 million test miles
- Micro hybrid (stop/start) vehicles: 3 models, 7 MHVs, 509,000 test miles
- NEVs: 24 models, 372 NEVs, 200,000 test miles
- BEVs: 47 models, 2,000 BEVs, 5 million test miles
- UEVs: 3 models, 460 UEVs, 1 million test miles
- Other testing includes hydrogen ICE vehicle and infrastructure testing

INL Vehicle/EVSE Data Management Process

Data Collection, Security and Protection

- Includes EV Project and non-EV Project Activities
- All vehicle, EVSE, and personal raw data is legally protected by NDAs (Non Disclosure Agreements) or CRADAs (Cooperative Research and Development Agreements)
 - Limitations on how proprietary and personally identifiable information can be stored and distributed
 - Raw data, in both electronic and printed formats, is not shared with DOE to avoid exposure to FOIA requests
 - Vehicle and EVSE data collection would not occur unless testing partners trusted INL would strictly adhere to legally binding NDAs and CRADAs
 - Raw data cannot be legally distributed by INL
- Current AVTA staff have used data loggers on vehicles and EVSE since 1993 to benchmark vehicle and charging equipment profiles

EV Project - Introduction


- ECOtality North America is the EV Project lead, with INL collecting data from the other participants
- Nissan and OnStar/GM are the prime partners, with more than 30 other partners such as electric utilities and air resource boards and state agencies
- For the EV Project, 7,500+ vehicle owners / infrastructure hosts have signed up to be testing partners
- Project objectives
 - Develop mature charge infrastructure "laboratories"
 - Collect and analyze data characterizing vehicle and infrastructure utilization
 - Demonstrate measures to minimize impacts of charging on the grid
 - Conduct trials of payment systems
 - Develop a sustainable business model for nonresidential charging infrastructure
 - Document and disseminate the results of the EV
 Project

8

EV Project Deployment Objectives

- 8,000 Residential EVSE for 8,000 plug-in electric vehicles (Nissan Leaf, Chevrolet Volt & Smart EV)
- 5,000 Non-residential EVSE (workplace, commercial, public, and street side)
- 200 DC Fast Chargers (publicly accessible)
- Deploying in ten states plus the District of Columbia

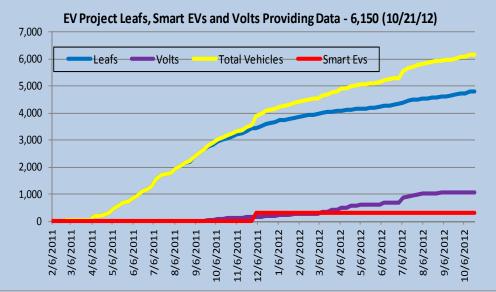
EV Project – EVSE Data Parameters, Collected per Charge Event

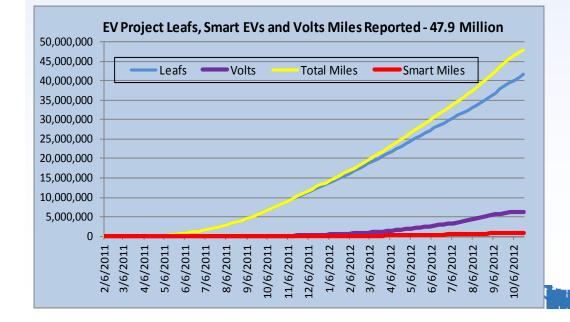
- Data from ECOtality's Blink EVSE network
- Connect and Disconnect Times
- Start and End Charge Times
- Maximum Instantaneous Peak Power
- Average Power
- Total energy (kWh) per charging event
- Rolling 15 Minute Average Peak Power
- Date/Time Stamp
- Unique ID for Charging Event
- Unique ID Identifying the EVSE
- And other non-dynamic EVSE information (GPS, ID, type, contact info, etc.)



EV Project – Vehicle Data Parameters Collected per Key-On and Key-Off Event

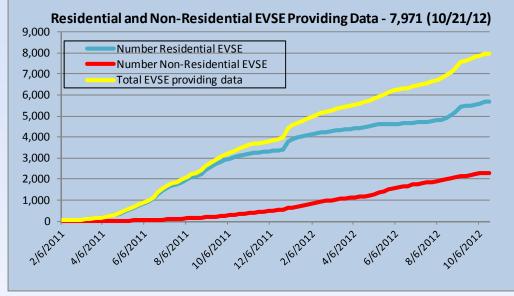
- Data is received via telematics providers from Chevrolet Volts and Nissan Leafs
- Odometer
- **Battery state of charge**
- **Date/Time Stamp**
- Vehicle ID
- Event type (key on / key off)
- **GPS** (longitude and latitude)

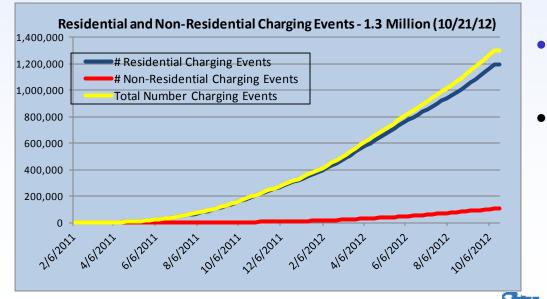

Recorded for each key-on and key-off event



EV Project – Vehicle Deployments / Miles

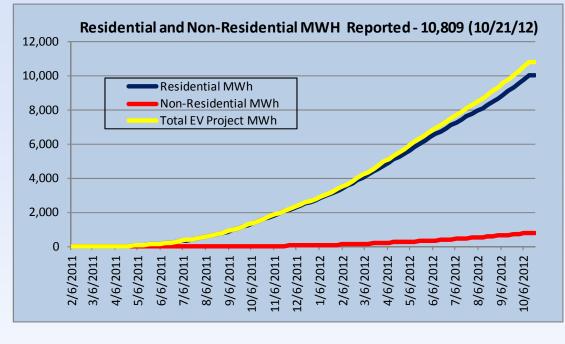
- 6,150 vehicles reporting data and growing
- 4,798 Leafs, 300 Smart EVs, and 1,052 Volts reporting


- 48 million total miles
- 125,000 test miles per day
- Data is continuously back-filled


idan Natural Laboratory 🧲

ENERG

EV Project – EVSE Deployment and Use



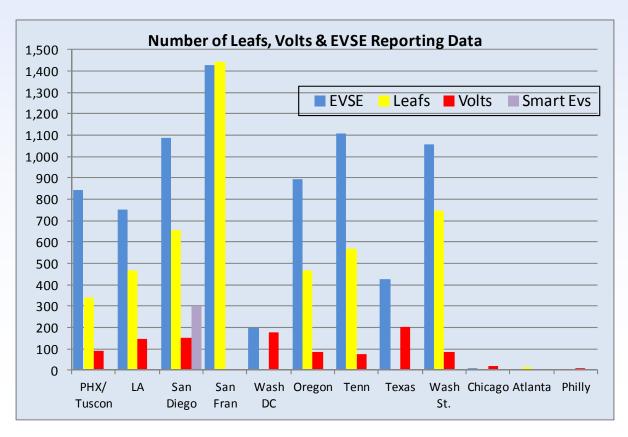
- 7,971 total EVSE reporting
 - 5,676 Residential EVSE
 - 2,295 non-Residential EVSE, includes DCFC
- 1.3 million charge events
 - 3,600 charge events per day
- Data is continuously back-filled

EV Project – Total Charge Energy (MWh)

- 11,000 MWh total electricity charged
 - 10,000 MWh residential
 - 800 MWh nonresidential
- 32 MWh used for charging per day
- Data is continuously back-filled

14

ENERG


- Vehicle efficiency cannot be accurately calculated using total vehicle miles and total energy
 - Non-EV Project vehicles sometimes charge at EV Project EVSE
 - EV Project vehicles may charge at 110V or other 240V non-EV Project EVSE

🔪 likka National Lakonatary 🧲

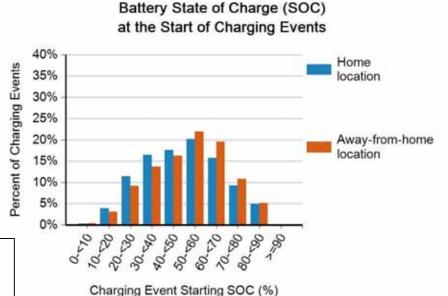
EV Project Overview Report 3rd Quarter 2012

- Vehicles and charging infrastructure deployed data @ INL
- Vehicles
 - 46.7 million miles total
 - 6,071 total vehicles
 - 4,719 Leafs
 - 1,052 Volts
 - 300 Smart EVs
- Regional analyses reported each quarter

- Charging infrastructure
 - 7,799 units installed
 - 1,237,703 charging events
 - 10,316 AC MWh

EV Project Vehicle Usage Reports

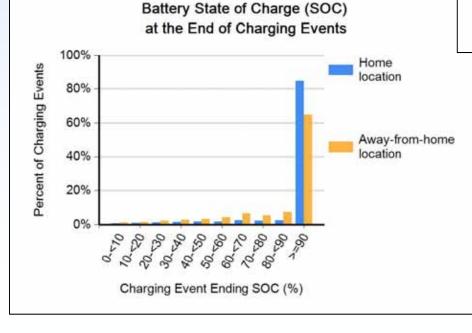
3rd quarter 2012 Data Only	<u>Leafs</u>	<u>Volts</u>
 Number of vehicles 	3,200	809
 Number of Trips 	813,430	286,682
 Distance (million miles) 	5.84	2.39
 Average (Ave) trip distance 	7.2 mi	8.3 mi
 Ave distance per day 	30.0 mi	41.2 mi
 Ave number (#) trips between charging events 	3.9	3.5
 Ave distance between charging events 	27.9 mi	29.3 mi
 Ave # charging events per day 	y 1.1	1.4
 Overall mpg 		136 mpg
 Overall AC Wh/mi 		222

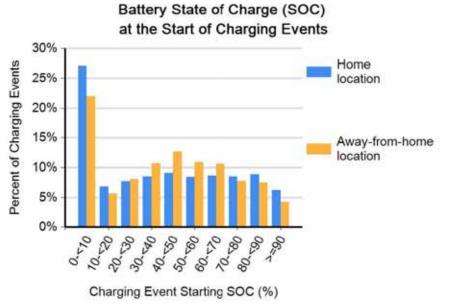

* Note that per day data is only for days a vehicle is driven

Contality Openergy 16

EV Project – Leaf Usage Report (3rd 2012)

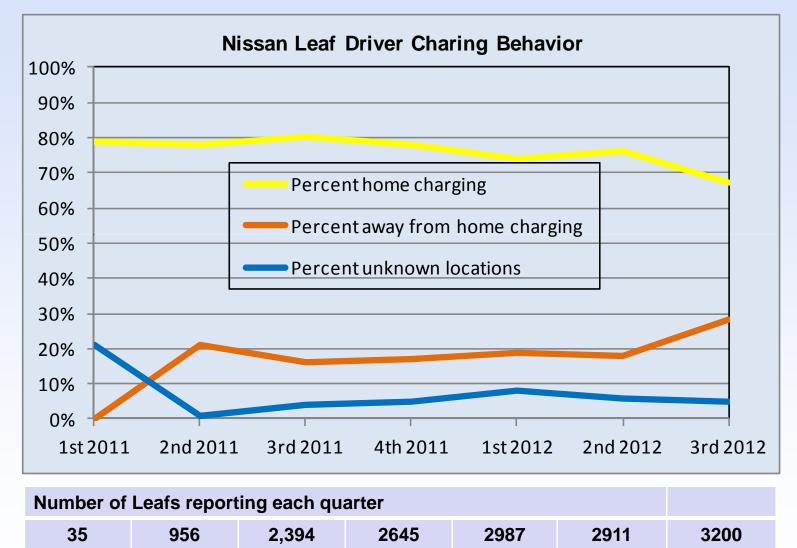
 Leaf battery SOC before and after charge events by home and non-home locations – national data



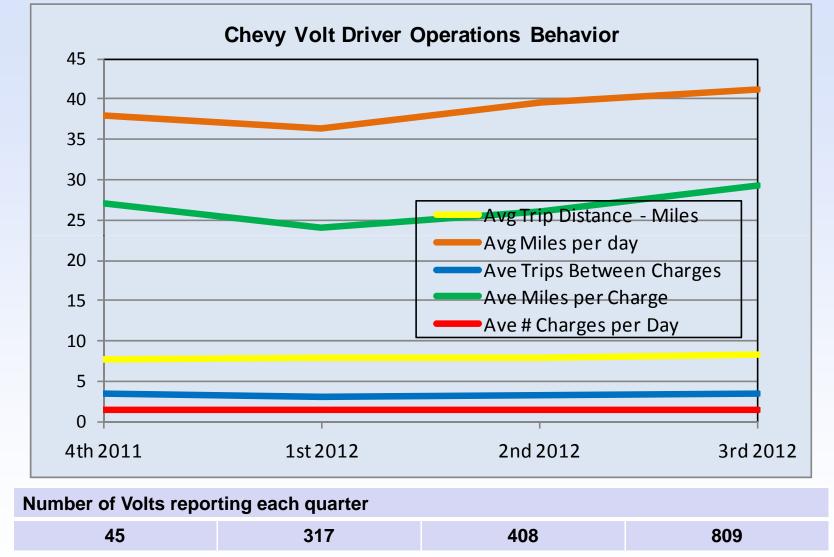


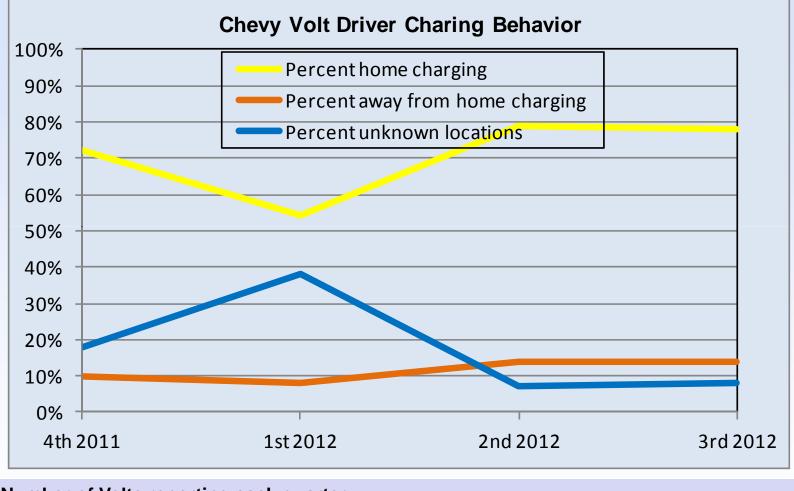
EV Project – Volt Usage Report (3rd 2012)

 Volt battery SOC before and after charge events by home and non-home locations – national data

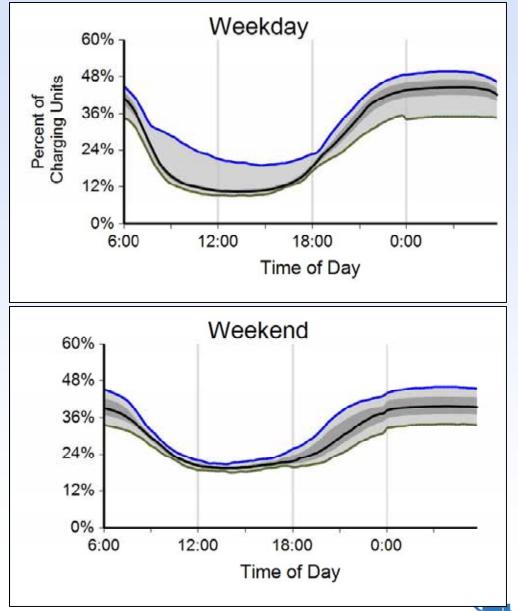

EV Project – Leaf Operations Trends

35	956	2,394	2645	2987	2911	3200

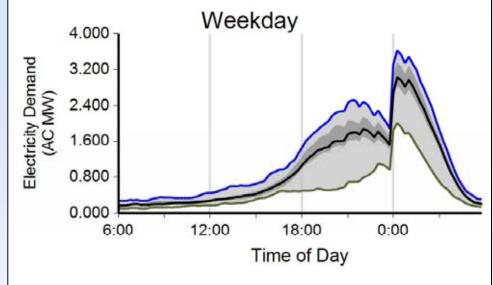

EV Project – Leaf Charging Location Trends

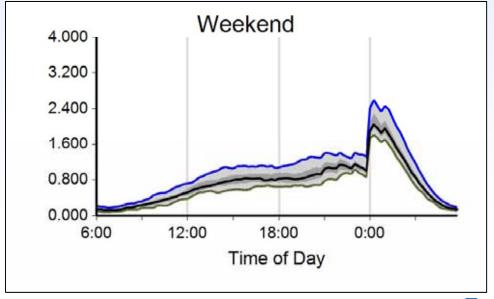

20

EV Project – Volt Operations Trends

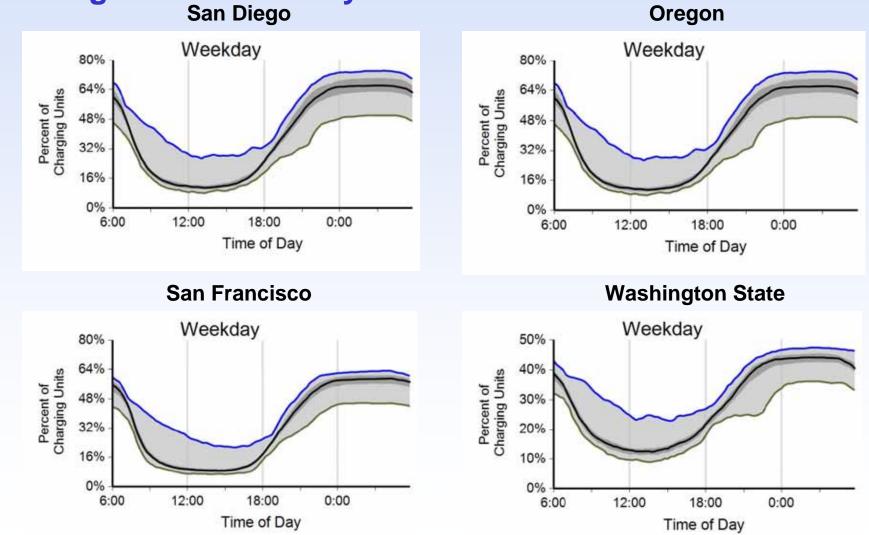

EV Project – Volt Charging Location Trends

Number of Volts reporting each quarter

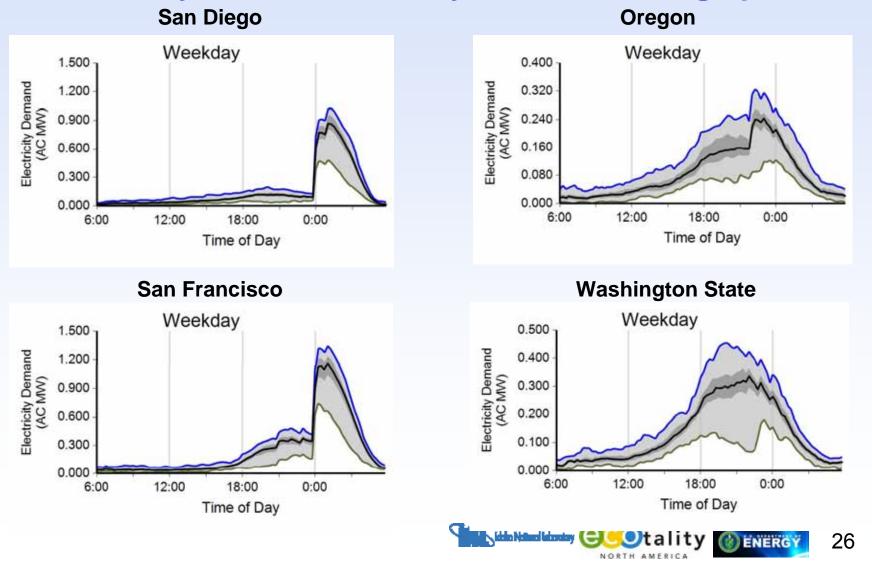

45 317	408	809
--------	-----	-----

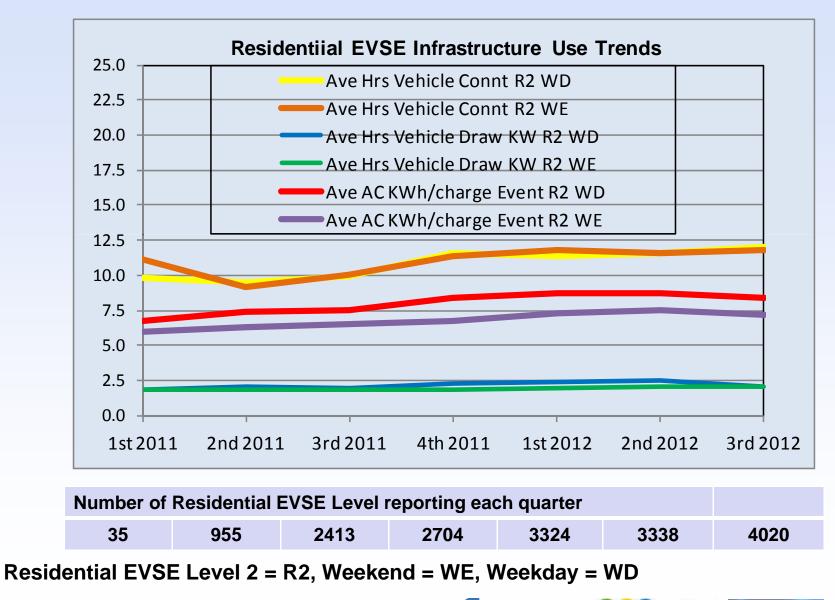


- Graphs document when EVSE have a vehicle connected during the 3rd quarter 2012
- National Data, all EVSE
- Range of Percent of EVSE and DC Fast Chargers with a Vehicle Connected vs. Time of Day



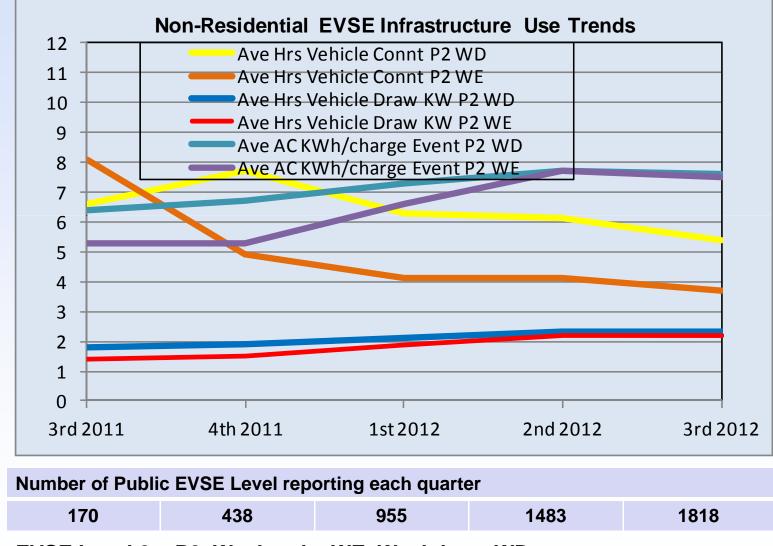
- Charging demand in AC MW during the 3rdnd quarter 2012
- National data, all EVSE
- Time of day kWh rates are influencing charging start times as measured by AC MW demand
- Range of Aggregate Electricity Demand vs. Time of Day (AC MW)


- Residential Level 2 Weekday EVSE 3rd Quarter 2012
- Regional time of day EVSE has a vehicle connected

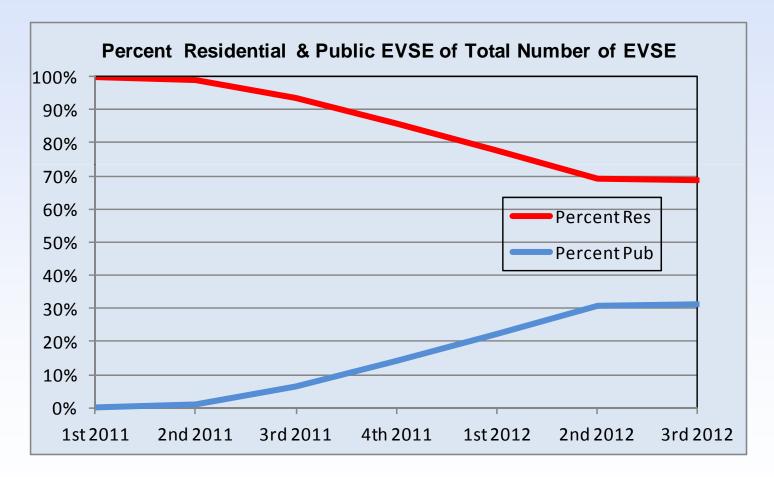

25

NORTH AMERICA

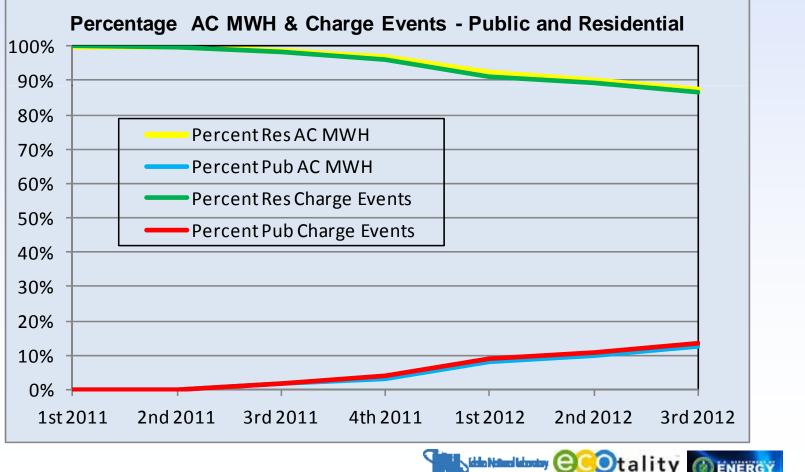
- Residential Level 2 Weekday EVSE 3rd Quarter 2012
- Time of day kWh rates clearly influence charge patterns



EV Project – Residential EVSE L2 Use Trends


27

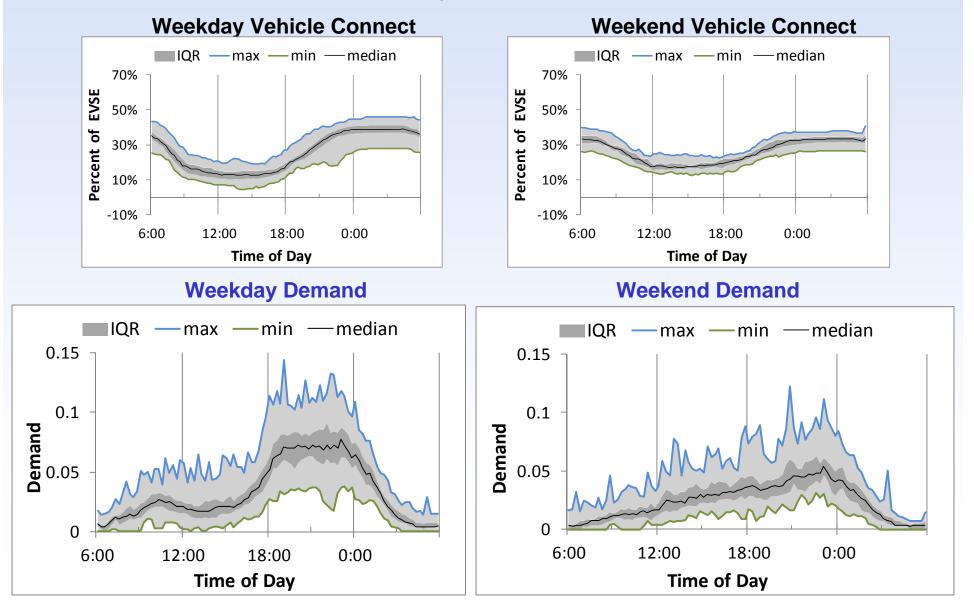
EV Project – Public EVSE L2 Use Trends


Public EVSE Level 2 = P2, Weekend = WE, Weekday = WD

Percent of public EVSE deployed is increasing, now representing 31% of all EVSE

- Percent charge events and AC MWH use by residential and public EVSE
- Public EVSE use (red & blue lines) is increasing with 13.5% charge events and 12.80% MWh 3rd quarter 2012

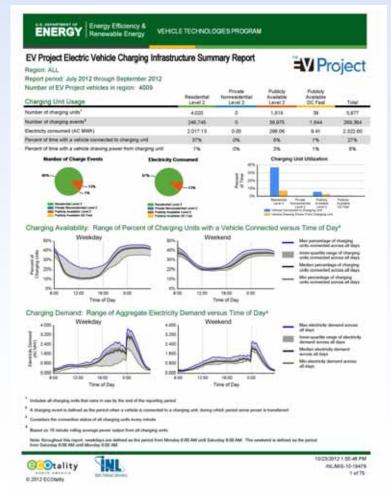
DC Fast Charging impacts on Demand


• Northwest Electric Utility Service Area

	Residential Level 2	Non Residential Level 2	DC Fast Charger
Number units	135	66	3
Number charge events	7996	1214	157
% time vehicle connected	35%	5%	2%
% time vehicle drawing power	6%	2%	2%
% of charging events	85%	13%	2%
% KWh consumed	86%	12%	2%

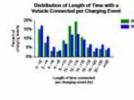
DC Fast Charging impacts on Demand (MW)

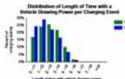
• Northwest electric utility service area, 204 units

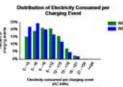

EV Project Data and Reporting

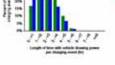
- EV Project reporting requires INL to blend three distinct data streams from ECOtality, Nissan and OnStar/GM
- Additional data streams from Daimler and a couple of EVSE manufacturers
- INL and ECOtality, with DOE concurrence, identified the type of reports that would be publicly released and all of the EV Project partners agreed (or relented)
- More than 80 EV Project reports are generated every reporting quarter
- More than 130 one time and special request reports have been generated
- 22 additional technical papers, lessons learned, and infrastructure planning reports published
- 56 presentations given by INL staff

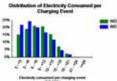
EV Project Reporting

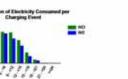

- http://avt.inel.gov/evproject.shtml ullet
- Public quarterly reports: 100 pages and 56,000 data values calculated for 4 public reports

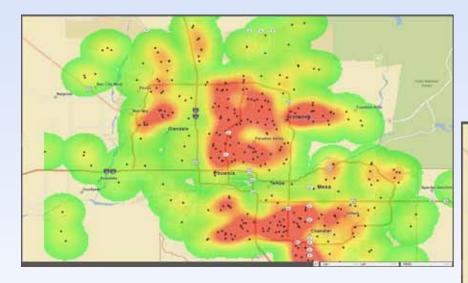


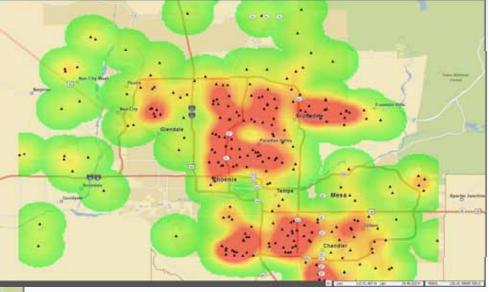

Residential Level 2 Electric Vehicle Supply Equipment (EVSE)


Region ALL Report period: July 2012 through September 2012



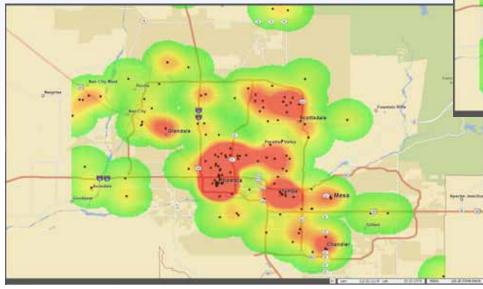





EV Project Reporting

Exploring visualization reporting methods via GIS

← EVSE Residential EVSE Phoenix


Leaf "home" locations

← EVSE Public EVSE Phoenix

35

Nidda Natural Islanday (C)

EV Project Lessons Learned – Currently Available

- http://www.theevproject.com/documents.php
- Reports available include
 - DC Fast Charge-Demand Charge Reduction (May 2012)
 - The EV Micro-Climate Planning Process (May 2012)
 - Signage (April 2012)
 - Greenhouse Gas (GHG) Avoidance and Fuel Cost Reduction (June 2012)
 - First Responder Training (March 2011)
 - Accessibility at Public EV Charging Locations (October 2011)
 - Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project (April 2012)
 - A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in The EV Project (May 2012)

EV Project Lessons Learned - Coming

- http://www.theevproject.com/documents.php
 - Need for Commercial Charging
 - Pricing of Commercial Charging
 - Residential Installation Process
 - Commercial Installation Process
 - EV Energy Metering

Permitting Cost (Residential & Commercial)

Residential Lessons Learned

- Permit timeliness has not been a problem
- Majority are over-the-counter
- Permit fees vary significantly- \$7.50 to \$500.00, mean \$112.14

Region	Count of Permits	Average Permit Fee	Minimum Permit Fee	Maximum Permit Fee
Arizona	66	\$96.11	\$26.25	\$280.80
Los Angeles	109	\$83.99	\$45.70	\$218.76
San Diego	496	\$213.30	\$12.00	\$409.23
San Francisco	401	\$147.57	\$29.00	\$500.00
Tennessee	322	\$47.15	\$7.50	\$108.00
Oregon	316	\$40.98	\$12.84	\$355.04
Washington	497	\$78.27	\$27.70	\$317.25

Residential Lessons Learned

- Average residential installation cost ~\$1,375
- Individual installations vary widely
- Some user bias to lower costs

Marlets In Ascending Order Of Residential Installation Cost	Number of Installations	Average Installation Cost	Variation From Project Average
Tennessee (entire State)	542	\$ 1,113.07	-19.0%
Arizona (Phoenix & Tucson)	357	\$ 1,148.88	-16.4%
Washington DC	3	\$ 1,197.44	-12.9%
Oregon (Portland, Eugene, Coralvls & Salem)	465	\$ 1,229.06	-10.6%
Washington (Seattle & Olympia)	730	\$ 1,289.56	-6.2%
Maryland	39	\$ 1,311.75	-4.5%
Washington	80	\$ 1,321.36	-3.8%
Virginia	38	\$ 1,341.01	-2.4%
San Fransisco	1254	\$ 1,386.13	0.9%
Texas (metro Houston & Dallas)	128	\$ 1,422.77	3.5%
San Diego	726	\$ 1,593.91	16.0%
Los Angeles	415	\$ 1,794.64	30.6%

- ADA significantly drives cost
 - Accessible charger
 - Van accessible parking
 - Accessible electric and passage routes to facility
- Permit fees and delays are significant for ADA
 - Load studies
 - Zoning reviews

• Commercial permits range \$14 to \$821

Region	Count of Permits	Average Permit Fee	Minimum Permit Fee	Maximum Permit Fee
Arizona	72	\$228	\$35	\$542
Los Angeles	17	\$195	\$67	\$650
San Diego	17	\$361	\$44	\$821
Texas	47	\$150	\$37	\$775
Tennessee	159	\$71	\$19	\$216
Oregon	102	\$112	\$14	\$291
Washington	33	\$189	\$57	\$590

- Demand and energy costs are significant for some utilities
 - 25¢/kWh
 - \$25/kW
- Some utilities offer commercial rates without demand charges
- Others incorporate 20 kW to 50 kW demand thresholds
- Nissan Leaf is demand charge free in some service territories

N	o Demand Charges - Nissan Leaf
CA	Pacific Gas & Electric
	City of Palo Alto
	Alameda Municipal Power
	Silicon Valley Power
AZ	Tucson Electric Power
OR	Eugene Water & Electric Board
	Lane Electric Co-op
TN	Middle Tennessee Electric
	Duck River Electric
	Harriman Utility Board
	Athens Utility Board
	Cookeville Electric Department
	Cleveland Utilities
	Nashville Electric Service
	EPB Chattanooga
	Lenoir City Utility Board
	Volunteer Electric Cooperative
	Murfreesboro Electric
	Sequachee Valley Electric Cooperative
	Knoxville Utility Board
	Maryville
	Fort Loudoun Electric
	Memphis Light Gas and Water Division

 Recurring Nissan Leaf DC fast charge demand charges are significant in many (California) utility service territories

Utility Demand Charges - Nissan Leaf			Cost/mo.	
CA	Glendale Water and Power	\$	16.00	
	Hercules Municipal Utility:	\$	377.00	
	Los Angeles Department of Water and Power	\$	700.00	
	Burbank Water and Power	\$	1,052.00	
	San Diego Gas and Electric	\$	1,061.00	
	Southern California Edison	\$	1,460.00	
AZ	TRICO Electric Cooperative	\$	180.00	
	The Salt River Project	\$	210.50	
	Arizona Public Service	\$	483.75	
OR	Pacificorp	\$	213.00	
WA	Seattle City Light	\$	61.00	

Future EV Project Data Analysis Subjects

- Pricing elasticity TOU rate influences?
- Regional and seasonal demographics and charging behaviors?
- Density of residential and non-residential EVSE as input to local micro distribution studies – transformer failures?
- Charge control preferences vehicle, Blink and web based, and scheduled versus random?
- Rich public versus non-rich public EVSE charging behaviors?
- Level 2 EVSE versus DCFC behaviors?
- Travel corridor versus convenience charging at stores?
- Length of vehicle ownership and miles per day / week / charge?
- Non-residential subcategories (public and work parking)?
- Etc., etc., etc.?

ENERGY Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES PROGRAM

Reporting period: April 2012 through June 2012

300

50

MPG.

Number of vehicle days driven: 6,598

Chevrolet Volt Vehicle Demonstration

Fleet Summary Report	
Number of vehicles: 143	

All operation Overall gasoline fuel economy (mpg) 73.7 Overall AC electrical energy consumption (AC Wh/mi) 170 Average Trip Distance 12.6 Total distance traveled (mi) 370,987 Average Ambient Temperature (deg F) 71.0

Electric Vehicle mode operation (EV)

Gasoline fuel economy (mpg)	No Fuel Used
AC electrical energy consumption (AC Wh/mi)	341
Distance traveled (ml)	185.282
Percent of total distance traveled	49.9%
Average driving style efficiency (distance weighted) [†]	83%

Extended Range mode operation (ERM)

Gasoline fuel economy (mpg)	36.9
AC electrical energy consumption (AC Wh/mi)	No Elec. Used
Distance traveled (mi)	185,705
Percent of total distance traveled	50.1%
Average driving style efficiency (distance weighted) ¹	79%

	City ³	Highway ³
Percent of miles in EV operation (%)	68.0%	32.4%
Percent Number of trips	85.4%	14,6%
Average trip distance (mi)	7.3	43.7
Average driving style efficiency (distance weighted) ¹	80%	82%

Percent Distance Driven for each Driving Style Efficiency

88

Driving Style Efficiency (%)

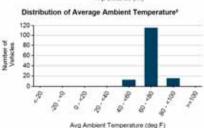
88888

Percent Distance Traveled By 41 Operating Mode (EV/ERM) 82 281 Percent of Total Dist.Traveled (%) ERM 16 EV EV 288888 Trici Distance (m) Percent Distance Traveled by Route Type (City/Hwy) City 155 Hichway 101

MPG

Fuel Economy & Electrical Consumption

By Operating Mode


AC Wh/m

Overall

ERM

EV

Trip Distance (mi)

1 The energy efficiency over the drive cycle is based on driving style. Driving in a more efficient manner results in a higher percentage for driving style 2 Plot shows average antibient temperature during all driving in the reporting period for each vehicle.

ERM

EV

3 City / Highway defined per SAE J2841

251

10%

(%) pages (%) pages

建度

8/5/2012 7:38:36 PM INL/MIS-10-20126 Page 1 of 2

Chevrolet Volt DOE ARRA Project

- Non-public fleet drivers operating 150 Volts
- May '11 to June '12
 - 1.2 million total miles
 - All trips, 70.0 mpg, 174 AC Wh/mi
 - EV mode, 352 AC Wh/mi. 49.5% miles
 - Extended range mode, 35.4 mpg
- April to June 2012
 - 371,000 miles
 - EV mode, 341 AC Wh/mi. 49.9% miles

Stability Contrality Cenergy 45

Chevrolet Volt DOE ARRA Project

- Non-public fleet drivers
- 150 Volts (May '11 June '12)
 - Average charging events per month
 17
 - Average # charging events per vehicle day
 1.3
 - Average miles per charging event
 43 miles
 - Average trips between charging events
 3.4
 - Average time connected per event
 - Average energy per charge event
 7.2 AC kWh
 - Average charging energy per vehicle 125 AC kWh month
 - Average trip distance city driving
 7.3 miles
 - Average trip distance highway driving 44.0 miles
 - Percent of miles in EREV (electric) mode 49.5%

3.2 hours

ENERGY Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES PROGRAM

Ford Escape Advanced Research Fleet

November 09 -

September 12

	Number	of	vehicles:	21
--	--------	----	-----------	----

Reporting period:

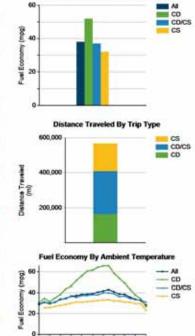
Date range of data received: 11/01/ Number of vehicle days driven: 9,925

ved: 11/01/2009 to 09/30/2012 driven: 9,925

All Trips Combined

Overall gasoline fuel economy (mpg)	38
Overall AC electrical energy consumption (AC Wh/mi) ¹	101
Overall DC electrical energy consumption (DC Wh/mi) ²	69
Total number of trips	47,525
Total distance traveled (mi)	566,651

Trips in Charge Depleting (CD) mode³


Gasoline fuel economy (mpg)	52
DC electrical energy consumption (DC Wh/mi) ⁴	163
Number of trips	27,835
Percent of trips city highway	83% 17%
Distance traveled (mi)	164,934
Percent of total distance traveled	29%

Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes⁵

Gasoline fuel economy (mpg)	37
DC electrical energy consumption (DC Wh/mi) ⁶	54
Number of trips	8,902
Percent of trips city highway	38% 62%
Distance traveled (mi)	242,847
Percent of total distance traveled	43%

Trips in Charge Sustaining (CS) mode?

Gasoline fuel economy (mpg)	32
Number of trips	10,778
Percent of trips city highway	66% 34%
Distance traveled (mi)	158,870
Percent of total distance traveled	28%

Gasoline Fuel Economy By Trip Type

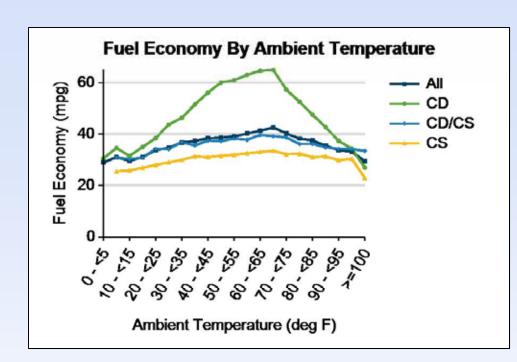
Ambient Temperature (deg F)

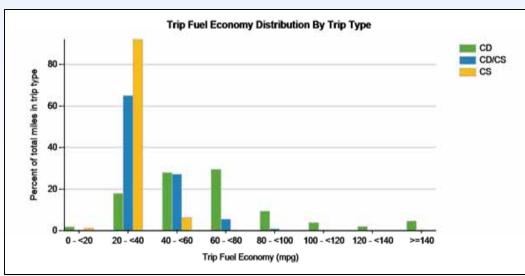
Notes: 1 - 7. Please see http://avt.inl.gov/pdf/phev/fordreportnotes.pdf for an explanation of all PHEV Fleet Testing Report notes.

Since these vehicles are flex-fuel capable, some driving events are conducted with E-85, which may decrease fuel economy results

"The Ford Escape Advanced Research Fleet was designed as a demonstration of customer duty cycles related to plug-in electric vehicles. The vehicles used in this demonstration have not been optimized to provide the maximum potential fuel economy."

10/2/2012 12:08:06 PM INL/MIS-11-20987 1 of 3


Ford Escape Adv. Research Vehicle


- 21 Ford Escape PHEVs
- Fleet drivers
- Nov 09 to Sept '12
- 567,000 test miles
- All trips, 38 mpg, 101
 AC & 69 DC Wh/mi
- Charge Depleting (CD),
 52 mpg & 163 DC
 Wh/mi. 29% of all miles
- Charge Sustaining (CS), 32 mpg. 28% of all miles
- Charging = 63% overall increase in mpg when comparing CD to CS trips

ENERG

Ford Escape Adv. Research Vehicle

- Ambient temperature and increased engine off-times impact mpg
- Charging = 60% increase in city mpg and 81% increase in highway mpg (compare CD to CS)
- City 36% CD and 23% CS miles engine off
- Highway 11% CD and 4% CS miles engine off


ENERGY	Energy Efficiency & Renewable Energy	VEHICLE TECHNO	OLC	OGIESF	PROGR	AM		
Chrysler RAM F	PHEV Fleet	All Fle	ets					
Number of vehicles:	109	Date n	and	e of da	ata rece	eived:	7/1/2011 to 5	/31/2012
Reporting period:	July 2011 to May 2012					driven:	14280	
All Trips Combined						Gasolin	e Fuel Economy B	y Trip Type
Overall gasoline fuel econom	ny (mpg)		-	19	25		12	_
Overall AC electrical energy	consumption (AC Wh/mi) ¹			100				
Overall DC electrical energy	consumption (DC Wh/mi)2			69	8 20	1		-
and the second leavest here and the second second	captured from regenerative bra	king (DC Whimi)		44	£ 18	6		
Total number of trips	sublered upon reflected and	and the standy		88 891	Economy (mpg)			
Total distance traveled (mi)			8	15,236	FuelE			
Trips in Charge Deple	ting (CD) mode ³				u e	8		
Gasoline fuel economy (mpg	0			23		<u> </u>		
DC electrical energy consum	sption (DC Wh/mi)4			210		Dista	nce Traveled By T	rip Type
Number of trips				37,002		1,000,000		_
Percent of trips city highway	y .	94%	1.	6%				
Distance traveled (mi)			2	05,637	2	800,000		
Percent of total distance trav	eled			25%	1	600,000		
Trips in both Charge I	Depleting & Charge Sus	taining (CD/CS) m	ode	985	Distance Traveled (m)	400,000		
Gasoline fuel economy (mpg	0			21	8			
DC electrical energy consum	ption (DC Wh/mi) ⁶			69		200,000		
Number of trips				10,253				
Percent of trips city highway	y .	74%	1	26%		Percent o	Drive Time by Op	waling Mode
Distance traveled CD CS (n	ni)	78,551	1	131,86		- CECCHE C	and and of op	and mode
Percent of total distance trav	eled CD CS	10%	1	16%		1	A	
Trips in Charge Susta	ining (CS) mode ⁷				56		-/	- 16 %
Gasoline fuel economy (mpg	D)			17				-5%
Number of trips				41,636		V.		2.76
Percent of trips city highway	y.	90%	ŧ.	10%			11 - 2	
Distance traveled (mi)			э	99,840			23 %	

Notes: 1 - 9. Please see http://wit.inl.gov/pdf/phev/chrysleneportnotes.pdf for an explanation of all PHEV Fleet Testing Report notes. This document also includes all report changes to date.

49%

The Chrysler RAM PHEV Fleet was designed as a demonstration program of customer duty cycles related to plug-in electric vehicles and may not necessarily demonstrate optimized fuel economy.

Vehicle fuel economy is based on customer usage and may not be representative of maximum potential fuel economy

odio

July 2011 to May 2012

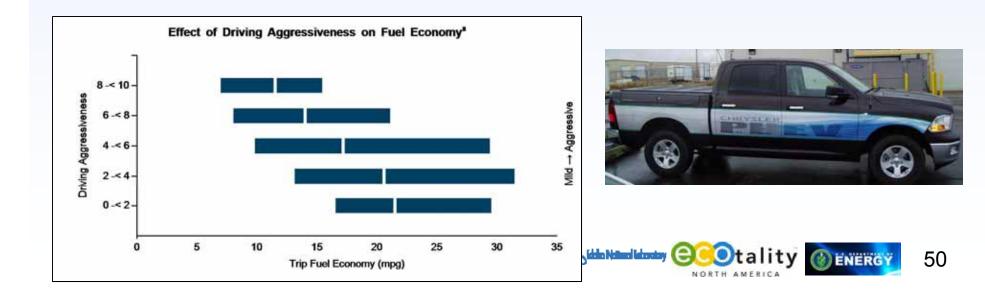
- 815,000 test miles
- All trips, 19 mpg, 100 AC & 69 DC Wh/mi. 44 DC Wh/mi captured by regenerative braking
- CD, 23 mpg & 210 DC Wh/mi
- CS, 17 mpg

Notice National Information

 Charging = 35% overall increase in mpg when comparing CD to CS trips

49

ENERG


Percent of total distance traveled

7/5/2012 12:28:02 PM 1 of 3 INL/MIS-11-22875

Makatha Showard Fred

Chrysler Ram PHEV Pickups

- Rams in fleet applications
- Vehicle driving 16% time engine stopped
- Vehicle stopped 23% time engine stopped
- 64.1 miles per charge event
- 7.0 trips per charge event
- 0.89 charge events per vehicle day
- 2.4 average hours per charge event
- 6.4 AC kWh average energy / charge

ENERGY Energy Efficiency & VEHICLE TECHNOLOGIES PROGRAM

ChargePoint [®]America Vehicle Charging Infrastructure Summary Report

Project Status to Date through: June 2012

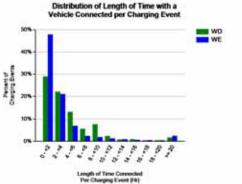
Charging Unit - By State	Residential	Private Commercial	Public	Not Specified	Charging Units Installed to Date*	Number of Charging Events Performed ^e	Electricity Consumed (AC MWh)
California	791	39	518	3	1,351	213,758	1,487.7
Connecticut	11	4.			11	2,569	15.1
District of Columbia		16	16		32	718	5.4
Florida	43	10	228	2	283	9,323	55.2
Maryland	18	7	46		71	5,956	37.9
Massachusetts	23	7	74		104	4,133	35.5
Michigan	252	14	172		438	60,436	407.1
New Jersey	51	2	17		70	15,397	95.7
New York	23	88	102	-	213	17,401	139.6
Texas	51	9	227		287	17,759	114.4
Virginia	23	17	43		83	10,061	65.0
Washington	12	7	123		142	8,153	50.0
Total	1,298	216	1,566	5	3,085	365,664	2,508.7

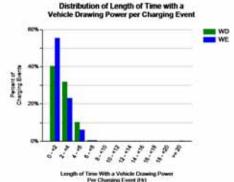
* Includes all charging units that were in use by the end of the reported

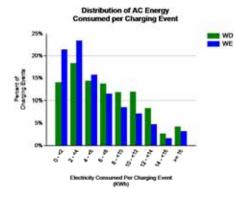
² A charging event is defined as the period when a vehicle is connected to a charging unit, during which period some power is transferred.

ChargePoint America ARRA Project

- Conducted by Coulomb
- Project to June 2012
- 3,085 EVSE installed and reporting data
- 1,298 Residential
- 216 Private/commercial
- 1,566 Public
- 5 unknown
- 367,000 charge events
- 2,500 AC MWh


10/9/2012 7:46:58 AM INL/MIS-11-24311 Page 1 of 8




Public Electric Vehicle Supply Equipment (EVSE)

Report period: April 2012 through June 2012

Individual Charging Event Statistics	Weekday	Weekend	Overall
Average length of time with a vehicle connected per charging event (hr)	2.9	2.2	2.7
Average length of time with a vehicle drawing power per charging event (hr)	1.3	1.0	1.2
Average energy consumed per charging event (AC KMh)	7.06	6.16	6.89

* Includes all charging units that were in use during the reporting period and have reported data to the INL.

² A charging event is defined as the period when a vehicle is connected to a charging unit, during which period power is transferred

Note: Weekends start at 6:00am on Saturday and end 6:00am Monday local time

10/9/2012 7:46:58 AM INL/MIS-11-24311 Page 8 of 8 ChargePoint America ARRA Project

- April June 2012 data
- 2,715 units
- Percent time vehicle connected
 - Residential 45%
 - Private/com 22%
 - Public 7%
- Percent time drawing
 power
 - Residential 9%
 - Private/com 4%
 - Public 3%
- EVSE data only

NORTH AMERICA

Habhand Contractions (Contractions)

ENERGY

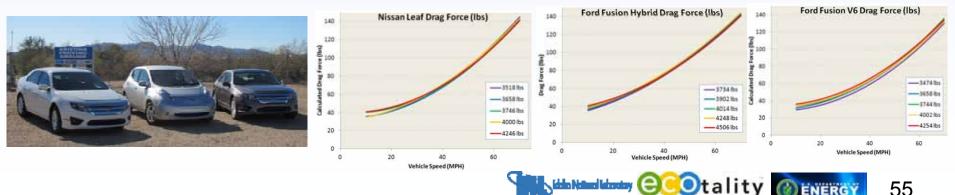
DC Fast Charge Impacts on Battery Life

- Quantify DC Fast Charge impacts via independent testing that compares AC Level 2 and DC fast charging
- Operate onroad two Nissan Leafs exclusively Level 2 charged and two Leafs exclusively DC Fast Charged on identical routes with same drivers and identical vehicles
- Laboratory cycle one Leaf at Level 2 and one at DC Fast Charge. Very controlled testing
- Compare battery capacity, resistance and other battery health indicator tests
- Periodic battery tests over 30,000 miles each, for one year, ending ~4th quarter FY2013. Publish results

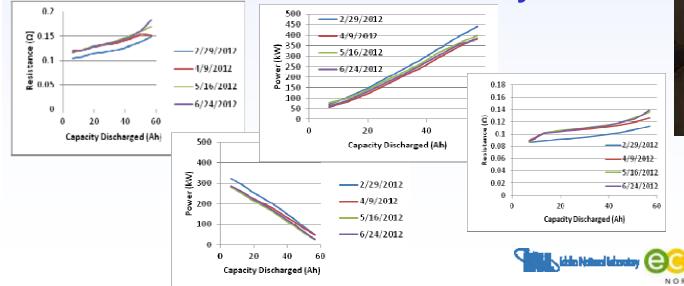
EVSE, DCFC and Wireless Charging Activities

- Benchmarked ten Level 2 EVSE for efficiency and standby power – 99.3 to 99.8% efficient
- Per NDAs, cyber security, EMF and efficiency test five low cost, smart Level 2 EVSE in support of DOE OE's FOA
- Developing with SAE Level 2 EVSE-to-PEV inter-operative capabilities demonstration with multiple units
- Completed first DCFC (Fast Charge) performance testing
- Developing with SAE a DCFC-to-PEV inter-operative capabilities demonstration with multiple units
- Per NDAs, cyber security, EMF and efficiency testing on manufacturer-developed wireless changing systems
- Based on lessons learned, conduct same testing on two wireless charging systems developed via an EERE FOA

ida Katual Laboratory 🧲



54


Vehicle Mass and Fuel Efficiency Impacts

- With ANL / ECOtality, multiple test weights tested for each of three vehicles (Leaf, Fusion ICE and HEV) – 250 lb incremental increases and decreases from stock weight
- Coastdown testing determines the impact of mass change on vehicle road load and drag forces
- Vehicle road load is calculated from change in speed (while coasting) and the mass of the vehicle
- Road load coefficients determined from coastdown testing are used to configure the chassis dynamometer
- Chassis dynamometer testing uses standardized drive cycles to determine the impact of mass change on vehicle fuel economy and energy consumption (MPG and Wh/mi)

Energy Storage Testing – Battery Mule

- Test DOE funded advanced energy storage systems (ESSs) in on-road operations. Quantify capabilities, limitations, and performance fade over the life of the ESS
- Only DOE project to perform onroad vehicle-system level testing of ESSs
- Enerdel battery mimics the Leaf battery demands to benchmark changes in calculated discharge, capacity fade, resistance, discharge power capability, charge resistance and charge power capability
- Toshiba is the next test battery

ENERC

56

Additional Activities

- Conducting first responders training program with the National Fire Prevention Association and DOT / NHTSA
 - NFPA, OEMs and INL identify full size vehicle battery packs, procure and define demonstration "events"
 - OEMs are donating batteries and batteries will be ignited in NFPA fire suppression test mule
- DOD and Federal Fleets support with FEMP cost share
 - DOD studies electric infrastructure and PEV deployment Lewis McCord, Jacksonville / Mayport, and Pendleton
 - 800 vehicles with data loggers, DOD, NPS, Veterans, etc.

Above source: Jalopnik, October 30, 2012 http://updates.jalopnik.com/post/34669789863/morethan-a-dozen-fisker-karma-hybrids-caught-fire-and

Acknowledgement

This work is supported by the U.S. Department of Energy's EERE Vehicle Technologies Program

More Information

http://avt.inl.gov

This presentation will be posted in the publications section of the above website under "VSATT – November 2012 Update INL Activities"

INL/MIS-12-27607

