DC Fast Charging Infrastructure 50 kW to 350 kW

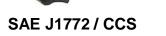
ww.inl.go

Barney Carlson Idaho National Laboratory Energy Storage & Advanced Vehicles

INL/CON-16-39573

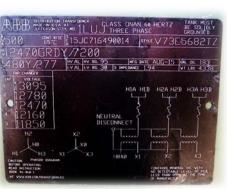
INL's Electric Vehicle Infrastructure (EVI) Lab

- Testing and evaluation results from advanced charging systems supports:
 - Support codes and standards development and harmonization
 - Grid modernization initiative
- Measurement evaluation metrics
 - System efficiency
 - EM-field emissions
 - Power quality
 - Response to dynamic grid events
 - Cyber security vulnerability assessment
- Wide range of grid input power
 - from 120 VAC to 480 VAC 3ϕ
 - 400 kVA total capability
- Sub-system and full vehicle testing capabilities


https://avt.inl.gov/panos/EVLTour/?startscene=pano5141

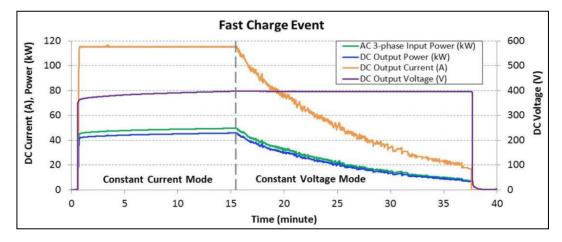
Current Technology: DC Fast charging

- CHAdeMO and SAE CCS
 - 50 kW power transfer
 - 480 VAC 36
 - 75 A circuit



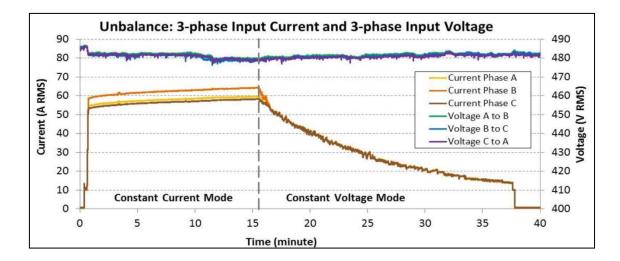
Current Technology: DC Fast charging

- Tesla Super Charger Network
 - 120 kW power transfer to each vehicle
 - Charging complex
 - (up to 8 Super Chargers at one site location)
 - 500 kVA from 12.5 kV utility electric grid feed
 - Stepped down at site to 480 VAC 3φ (600 A)



Test Results: DC Fast charging

- ABB Terra 53 CJ while charging a 2015 Nissan Leaf
 - Constant Current Mode
 - 92.3% AC to DC efficiency
 - 0.98 Power Factor
 - 11.0% input current THD
 - 6.1% Phase current unbalance



Current Technology: DC Fast charging

INL's test results:


- ABB Terra 53 CJ while charging a 2015 Nissan Leaf
 - Moderate phase to phase unbalance measured during constant current mode

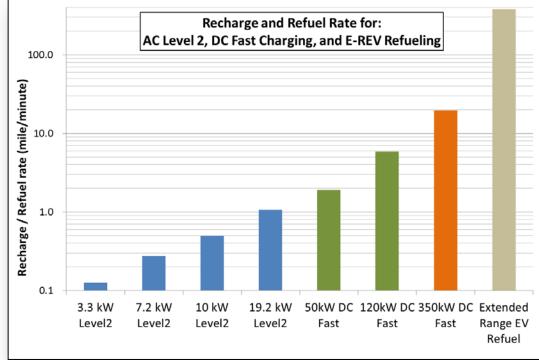
Current Technology: DC Fast charging INL's test results:

• ABB Terra 53 CJ while charging a 2015 Nissan Leaf

https://avt.inl.gov/sites/default/files/pdf/evse/ABBDCFCFactSheetJune2016.pdf

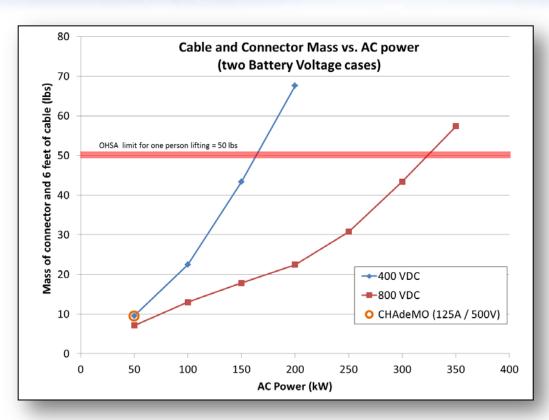
Future Technology: Extreme Fast Charging

- Extreme Fast Charging (XFC)
 - Goal: charge in <10 minutes
 - 150 kW to 350 kW
 - For comparison: gasoline refueling
 - 10 gallons in 1 minute (~20,000 kW and ~330 kWh)
- Infrastructure requirements (each XFC)
 - 480 VAC 3φ
 - 225 A to 525 A circuit (150 to 350 kW)


Future Technology: Extreme Fast Charging

- Discrete circuit breaker and wiring sizes may limit / discretize the power level choice
 - Available breaker examples: 400A, 500A, 600A, etc.
- Potential issues
 - Distance / availability of 12 kV grid feed near the site
 - Mass of the charge cord and connector
 - Standardization (CHAdeMO, SAE CCS, Tesla, etc.)
 - Cost: component costs, installation costs, demand charges, etc.
- CHAdeMO and CCS
 - 150 kW (350A DC) charging standards in progress / near completion
 - First CHAdeMO 150kW installations expected in 2017
 - Both CHAdeMO and CCS are working towards 350 kW

Recharge Rates of Various Methods


- Recharge Rate
 - Currently up to 120 kW
 - 6 mile/min
- Refuel rate for liquid fuel is limited by EPA to 10 gal/min (40 CFR 80.22)
 - >300 mile/min
- Proposed 350 kW fast charge
 ~20 mile/min

Mass of Charger Connector and Cable


- As charge power increases current and conductor size increases
 - Conductor size per NFPA 70E
 - Lifting mass limitation (OHSA)
 - 50 lbs. for one person
 - Higher battery voltage:
 - reduced charge current and therefore reduced cable size and mass
 - impacts all other vehicle high voltage component requirements

daho National Laboratory

Connector and Cable Cooling

- With active cooling of the cable and connector •
 - Pros:
 - Smaller wire gauge and connector •
 - Reduced size, mass, cable stiffness
 - Cons:
 - Resistive losses increase with smaller wire gauge
 - Cooling system power
 - Total system cost higher
- Tesla published patents on cooling for charger connector and cable

Summary

- INL's test results shows:
 - CHAdeMO DC Fast charger
 - 50 kW input power
 - 92% efficiency
 - 0.98 Power Factor
- Ongoing effort to study the feasibility of Extreme Fast Charging
 - Goal: charge in <10 minutes</p>
 - 150 kW to 350 kW

Acknowledgement

This work is supported by the U.S. Department of Energy's EERE Vehicle Technologies Program

> More Information http://avt.inl.gov http://at.inl.gov