Light-Duty Plug-in Electric Vehicle & Charging Infrastructure Data Collection in the U.S.

Jim Francfort (Presenter)
Barney Carlson, Matt Shirk and John Smart
9th US – China Electric Vehicle and Battery Technology Workshop
Seattle, Washington
August 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information

INL/CON-14-32829
Idaho National Laboratory

- U.S. Department of Energy (DOE) laboratory
- 890 square mile site with 4,000 staff
- Support DOE’s strategic goal:
 - Increase U.S. energy security and reduce the nation’s dependence on foreign oil
- Multi-program DOE laboratory
 - Nuclear Energy
 - Fossil, Biomass, Wind, Geothermal and Hydropower Energy
 - Advanced Vehicle and Battery Testing
 - Homeland Security and Cyber Security
AVTA Objectives

• INL conducts the light-duty portion of DOE’s Advanced Vehicle Testing Activity (AVTA)

• Support DOE’s goal of petroleum reduction and energy security

• Perform cost-effective testing and demonstrations of advanced technology vehicles and fueling infrastructure to:
 – Identify technologies’ real-world petroleum displacement potential
 – Verify DOE-funded technology development investments returns

• Provide results and lessons learned to a broad range of stakeholders, including:
 – DOE modelers (ANL, NREL, ORNL, PNNL) and target setters
 – R&D organizations: reduces risk of product development decisions
 – Electric utilities, policy makers, and government agencies to guide their infrastructure requirements planning and impact assessment
 – Standards development organizations to support C&S development
 – Fleet managers and private consumers to assist them in making vehicle and infrastructure purchase, deployment, and operating decisions that minimize the overall cost of ownership
Vehicle / Infrastructure Testing Experience

• 144 million test miles accumulated on 11,700 electric drive vehicles and 16,600 charging units. Does not including a new analysis project:
 – Data for 16,190 additional OEM PEVs received by INL for eVMT analysis. 100+ million miles of data?
• Since 1994, INL staff have benchmarked PEVs in field operations via in-vehicle data loggers & data bases
• EV Project: 8,228 Leafs, Volts and Smarts, 12,363 EVSE and DCFC, reporting 4.2 million charge events, 124 million test miles. At one point, 1 million test miles every 5 days
 – Charge Point: 4,253 EVSE reporting 1.5 million charges
 – PHEVs: 15 models, 434 PHEVs, 4 million test miles
 – EREV s: 2 model, 156 EREV s, 2.3 million test miles
 – HEVs: 24 models, 58 HEVs, 6.4 million test miles
 – Stop/start hybrid vehicles: 3 models, 7 MHVs, 608,000 test miles
 – NEVs: 24 models, 372 NEVs, 200,000 test miles
 – BEVs: 48 models, 2,000 BEVs, 5 million test miles
 – UEVs: 3 models, 460 UEVs, 1 million test miles
 – Other testing: hydrogen ICE vehicle and infrastructure testing
Approach/Strategy

• Testing procedures are established for each technology based on:
 – Existing standard test procedures (SAE). However, a technology can be so new that industry procedures do not yet exist
 – Recommendations from fleet managers and subject matter experts from industry and other national laboratories
 – Procedures are published and strictly followed to reduce testing uncertainties

• Different test methods are used to balance testing control, repeatability, sample size, costs, and the vehicle’s technology capabilities:
 – Laboratory testing (battery packs, EVSE)
 – Closed test tracks and dynamometers
 – On-road captive fleet testing
 – Vehicle and infrastructure demonstrations by independent fleets and private consumers
Approach/Strategy cont’d

- Vehicle and EVSE testing results are published to document:
 - Real-world vehicle fuel economy and electricity consumption as a result of driver behavior and external conditions
 - Traction battery pack capacity reductions
 - Vehicle life-cycle costs
 - Efficiency of charging infrastructure technologies
 - Vehicle fuel economy and electricity consumption as a result of driving and charging behavior
 - Infrastructure use and electricity demand patterns

- Publication of results address barriers by:
 - Helping end-users make wise purchase, deployment, and operating decisions
 - Verifying results of DOE-funded technology development to prevent waste and drive future decisions
 - Helping infrastructure planners define deployment requirements
 - Providing input to codes and standards development and validation process
Approach/Strategy cont’d

• Data loggers are exclusively used for data collection
• With the exception of captive fleets, wireless data transfer is also essential
 – Telematics
 • Cellular
 • Wi-Fi
 • PLC
 • GPS
Approach/Strategy cont’d

• Results are disseminated in numerous ways, including:
 – To automotive and electric utility representatives via DOE technical team meetings (VSATT, GITT, EESTT, MTT)
 – Direct meetings with automotive equipment manufacturers (OEMs), federal/state/local agencies, NGOs and universities
 – Conferences, Clean Cities webinars, and other public venues
 – Via the EERE VTO and INL websites

• Successful and cost-effective large testing activities are only made possible by contributions from testing partners – single to multiple organizations and sometimes thousands of individual participants in teaming agreements

• Successful and cost-effective field research requires:
 – Partners must be mutually dedicated to success
 – Each partner must make some sort of research investment
 – Partners must have mutual needs in the research outcomes
Collaboration Examples

- **Intertek Testing Services** – AVTA testing partner
- **ANL & ORNL** – AVTA vehicle dynamometer testing
- **Vehicle and infrastructure demonstrations**
 - Ford, GM, OnStar, Chrysler, Nissan
 - ChargePoint, NYSERDA, NYC Taxi & Limousine Commission
 - AeroVironment, EPRI, Oregon State, Washington State
- **EV Project** – 11,000 use agreements signed
- **Testing to support codes and standards development**
 - DOT, NFPA, SAE, NIST
- **Federal fleet outreach activities**
 - FEMP, GSA, DOE Clean Cities, US Park Service
 - US Army, Navy, Air Force, Marine Corps
- **Universities**
 - University of California Davis, U of Victoria,
 - U of Wisconsin, Ohio State, Colorado State, Utah State University
EV Project – Infrastructure Deployment Study

- Objective – develop a mature charging infrastructure to guide the design of future infrastructure deployments based on the feedback from this project
 - Install residential Level 2 EVSE for Leaf & Volt Vehicles
 - Install level 2 commercial EVSE
 - Install DC fast charge in cities and travel corridors
 - Develop permitting and installation experience
 - Create and retain jobs
EV Project – Vehicle Data Collection

• General public purchases Leafs and Volts and agrees to provide data, in exchange for residential Level 2 EVSE

• Data is received via telematics providers from Chevrolet Volts and Nissan Leafs

• Parameters recorded for each key-on and key-off event
 – Odometer
 – Battery state of charge
 – Date/Time Stamp
 – Vehicle ID
 – Event type (key on / key off)
 – GPS (longitude and latitude)

• Additional data is received monthly from car-sharing Car2go for the Smart EVs
EV Project – Infrastructure Data Collection

- Collect Level 2 and DC fast charger (DFC) charge data using cellular and internet based network. Parameters:
 - Connect and Disconnect Times
 - Start and End Charge Times
 - Maximum Instantaneous Peak Power
 - Average Power
 - Total energy (kWh) per charging event
 - Rolling 15 Minute Average Peak Power
 - Date/Time Stamp
 - Unique ID for Charging Event
 - Unique ID Identifying the EVSE
 - And other non-dynamic EVSE information (GPS, ID, type, contact info, etc.)

- Multiple vehicle and infrastructure data streams are merged and stored at INL for analysis and reporting
Data Collection, Security & Protection for EV Project and All Cooperative Research Projects

• All vehicle, EVSE, and PII raw data is legally protected by NDAs (Non Disclosure Agreements) and use agreements
 – Limitations on how proprietary and personally identifiable information can be stored and distributed
 – Raw data cannot be legally distributed by INL

• NDAs with all program partners, and 11,000 public partners (agreements with general public vehicle owners and site hosts)

• Vehicle and EVSE data collection would not occur unless testing partners trusted and had legal assurance INL would strictly adhere to NDAs
Vehicle-based eVMT Project

- OEM PEV electric Vehicle Miles Traveled (eVMT) analysis
 - Ford, GM, Toyota and Honda requested INL support identifying eVMTs for PHEVs, EREVs and BEVs
 - Total vehicle miles traveled (VMT)
 - eVMT per vehicle month
 - eVMT for each vehicle
 - Most of the data for the 16,190 PEVs have been received by INL
 - Ford: 14,000 Fusion & C-Max PHEVs, & Focus BEVs
 - Honda: 190 Accord PHEVs & 500 Fit BEVs
 - Toyota: 1,500 Prius PHEVs (waiting on NDA)
 - In addition to the existing INL’s EV Project data sets for this study
 - GM: 1,867 Volt EREVs
 - Nissan: 4,039 Leaf BEVs
 - 22,000 total vehicles from across the U.S.A. in the eVMT study
Vehicle-based Projects

- Chrysler RAM PHEV Demonstration (ARRA)
 - Second "stage" of data collection. Continuing data transfer to INL. Project may extend into 2015
 - 60+ parameters collected via onboard data loggers
 - Percent of total charging energy from L 1- 18% & L 2 - 82%
 - Average time to charge from 20% to 100% SOC Level 1 – 11.53 hours & Level 2 - 2.17 hours

- NYC Nissan Leaf taxi fleet
 - Small fleet of Leafs in NYC taxi fleets
 - Approximately 25 data parameter collected via onboard data loggers
 - Uses DCFC and Level 2
Vehicle-based Projects

- **Via Motors PHEV conversions**
 - Approximately 350 vans and 4x4 pickup conversions
 - ARRA project with EPRI, Via & SCAQMD. CARB certification anticipated soon
 - EPRI data logger system will be used via Smart Phone
 - Examine grid use and petroleum reduction

- **Echo Automotive PHEV conversions**
 - Add 9 kWh Li-ion battery to ICE pickups and Vans
 - Echo telematics system will send data for analysis to INL
 - Examine grid use and petroleum reduction benefits of retrofit ICE vans
Vehicle- & Infrastructure-based Project
• DC Fast Charging – onroad and lab testing of six Nissan Leafs
 – Objective to benchmark DCFC impacts on capacity and range
 – 50,000 miles accumulated on two Level 2 and two DCFC Nissan Leafs. Battery tests at start and 10,000 mile segments
 – Track testing identifies range loss
 – Two batteries in INL lab testing. 1 each Level and DCFC
Vehicle- & Infrastructure-based Project

• DC Fast Charging – onroad and lab testing of six Nissan Leafs
Vehicle- & Infrastructure-based Projects

• DCFC Acceptance Rates at Various Temperatures
 – Objective is to quantify temperature impacts on grid use
 – Develop formal testing regime to examine battery charge acceptance rates at various ambient temperatures during DCFC and Level 2 charging
 • Results are preliminary as the tests were undertaken to identify needed test procedures
 • 2013 Nissan Leaf at 6,000 miles was used
 • 2012 Mitsubishi i-MiEV at 5,700 miles was used
 – Identified additional instrumentation needed and proper test regime
Vehicle- & Infrastructure-based Projects

- DCFC Acceptance Rates at Various Temperatures
- 2013 Leaf - DC Fast Charging @ 0, 25 & 50 C

- After 30 minutes:
 - 50 C: 77% SOC
 - 25 C: 77% SOC
 - 0 C: 53% SOC

- At charge end:
 - 50 C: 87% SOC at 62 minutes
 - 25 C: 91% SOC at 67 minutes
 - 0 C: 91% SOC at 121 minutes

- Total kWh:
 - 50 C: 17.9 kwh
 - 25 C: 18.2 kWh
 - 0 C: 17.4 kWh
Vehicle- & Infrastructure-based Projects

- DCFC Acceptance Rates at Various Temperatures
- 2013 Leaf - DC Fast Charging @ 0, 25 & 50 C

![Power During DC Charging](image)

Preliminary Data Results DC kW
EVSE & PEV Projects

• I-5 Travel corridor study of DCFC (DC Fast Chargers) and Level 2 use
 – DCFC & Level 2 data from EV Project, ChargePoint and AeroVironment is used in a blended fashion
 – This and other analysis required venue standardization across all projects. This has been completed
 – I-5 data has been loaded and analysis started. Initial results should be available shortly
 – Driver behaviors (driving and charging) will be analyzed
 – Requested by U.S., Washington, and Oregon DOTs, and various additional stakeholders

• Smart and less than optimally smart (Dumb) EVSE Testing
 – Fifteen Level 1 & 2 EVSE and DC Fast Chargers (DCFC) efficiency (includes standby power) tested to date
 – Testing includes efficiency and cyber security testing of Smart EVSE, with reports only going to manufacturer
EVSE & PEV Related Projects

• DC Fast Charging with Distributed Energy Storage in California
 – 55 DCFC with distributed energy storage
 – 55 additional DCFC with no storage
 – INL will blend PEV and DCFC data. FY15 start
 – Preliminary approvals completed and NDAs being signed
 – INL analysis support requested by vehicle and charger industries

• NYSERDA - EVSE
 – Data collection from approximately 500 EVSE in NY State is ongoing. EVSE reports generated for NYSERDA. Multiplicity of EVSE providers. NYSERDA requested INL support
Grid Related: Facebook Workplace Charging

- Objective to benchmark workplace charging station use
- Facebook’s office campus in Menlo Park, CA (5/1 to 8/15, 2013)
- Charging stations included
 - 12 ChargePoint EVSE units capable of AC Level 1 and AC Level 2 charging rates (J1772 & NEMA ports)
 - 10 Blink AC Level 2 EVSE (electric vehicle supply equipment) units (J1772 port)
 - 1 Blink DC fast charger (two CHAdeMO ports)
 - EV Project & ChargePoint America project data blended
- Quantified driver preferences for Levels 1 and 2 EVSE and DC fast chargers, percent SOC, and charging profiles at workplaces

- Analysis supports Workplace Charging Initiative and future deployment decisions at other workplaces
Grid Related Projects

• SAE Interoperability Benchmarking
 – Identifies non-interoperable vehicles and EVSE for SAE J1772 compliant vehicles and EVSE
 • Approximately 30 Level 2 EVSE and 10 vehicles
 • Conducted with Intertek and SAE
 • Feedback results to SAE for their sharing with manufacturers
 • INL has technical over-site. Conducted as part of the Advanced Vehicle Testing Activity
 – Second future benchmarking will use DCFC
 • Charge port protocol questions will have to be resolved
For publications and general plug-in electric vehicle performance, visit http://avt.inl.gov

Funding provided by DOE`s Vehicle Technologies Office