Cyber Security of DC Fast Charging: Potential Impacts to the Electric Grid

rw.inl.gov

Barney Carlson – Advanced Vehicles group Ken Rohde – Cyber Security R&D group

Sept. 12, 2018

INL/MIS-18-51289

Relevance of Cyber Security for High Power EV Charging

- 1. Public Safety
 - High voltage & high current charging infrastructure
- 2. Potential wide spread grid impact
 - Intermittent high load: ranging from 50kW to 350+ kW
 - Increasing deployment of fast chargers to meet needs of increasing EV market adoption
- 3. Consumer confidence in charging infrastructure
 - Reliability and robustness required to reduce range anxiety

INL Capabilities: EV Charging Grid Integration Research

- Charging Infrastructure Evaluation
 - Operational performance & dynamic response evaluation
 - Conductive (L2, DCFC, XFC)
 - Wireless power transfer (WPT)
- Dynamic Evaluation & Analysis
 - Power hardware-in-the-loop real time emulation
 - Communication
 - Dynamic transients
 - Power Electronics
- Cyber Security R&D
 - End-to-End research methodology
 - Integrated risk management
 - Consequence-driven Cyber-informed engineering (CCE)
 - Strategy development to close attack vector & gaps

<u>INL's Capability</u>: Identify and mitigate EV charging infrastructure vulnerabilities capable of compromising electric grid resiliency and reliability

Cyber Security: Electrified Transportation Charging Infrastructure

- Vulnerabilities (Pathways and Attack Vectors)
 - System vulnerabilities
 - Communications pathways (vehicle to EVSE, EVSE to smart grid, etc.)
 - Controls systems (power electronics, energy management, thermal controls, etc.)
 - Physical vulnerabilities (access control, electrical, thermal, etc.)

Risk, Threats, & Impacts:

- *Moderate*: denial of service (no charging)
- Extensive: hardware damage / destruction
- Severe: human safety; wide-spread disruption of electrical power distribution / transmission

Mitigation Strategies & Solutions:

Prioritize mitigation of exploitable and high risky vulnerabilities

EV Charging Communications and Controls

External Attack Surfaces and Attack Vectors

Internal Attack Surfaces and Attack Vectors

Project Scope

- Identify and evaluate high risk vulnerabilities of 50 kW DC Fast Charging system (DCFC)
 - Scope to date: internal attack vectors
 - power electronics, internal controls systems, and internal communications
- Determine extent of possible impacts
 - Hardware damage
 - Impacts to electric grid
- Develop cyber-informed engineering methodologies
- Evaluation of production DCFC (50 kW) with J1772 CCS and CHAdeMO
- Vehicles utilized during evaluation
 - 2014 EV with CHAdeMO
 - 2015 EV with J1772 CCS

Photo source: Nissan

Photo source: BMW

Photo source: SAE International

Attack Vectors - DCFC

- Minimal details presented: do not publically disclose detailed malicious information
 - DCFC internal power electronics communications are disrupted
 - Using off the shelf communication tools (send & receive messages)
 - "Man in the middle" module was not used
 - After physical access was obtained (open DCFC enclosure), connection was easily made to the single internal communications network
 - With remote access achieved, same control manipulation is enabled since the HMI is connected to the single internal communications network
- Able to manipulate modular power electronics controls system inside DCFC
 - 1. Disrupt controls coordination between power electronics modules
 - 2. Simultaneously turn off all power electronics modules
- Unable to directly control high speed switching inside the power electronics modules
- Unable to over charge the EV (excessive current over EV requested current)
 - EV stopped charge event: shut down command or opening battery contactors

Recent Results and Findings

- Disrupt controls coordination between power electronics modules
- Response of the DCFC:
 - Fluctuation of:
 - Input power from grid
 - Input power quality
 - Power Factor
 - Current THD
 - Output power to EV
 - Results in power quality outside of industry limits
 - Power Factor: <0.8
 - Current THD: > 20%

Recent Results and Findings

- Simultaneously turn off all power electronics modules
- Response of the DCFC:
 - Full power (50 kW) to standby power (~300W)
 - 0.020 seconds (-2.6 MW/sec)
- No impact to grid from a single DCFC shut down
- Potential impact to grid if simultaneously shut down of 100's of DCFC
 - ? What about 350 kW XFC

Future Advancement: High Power and Complexity

- Increased vulnerabilities and risk with increased charge power and system complexity
- Increased System Complexity
 - Advanced Control System of modular components
 - Multiple communication pathways
- Increased Charge Power
 - Potential increased grid interaction impacts
 - Increased safety risks

Charge Power

Wireless Charging (WPT) & Xtreme Fast Charging (XFC)

- XFC: Higher power
 - 350 kW (500A / 1000VDC) or higher
 - Liquid cable & connector cooling system
 - Multiple standards still required (CCS, CHAdeMO, GB/T, overhead charging, etc.)
 - Likely co-located with several XFC at charge depot (>1 MW demand on grid)

Photo source: Electrify America

- WPT: Higher complexity controls
 - Controls communication is wireless (from ground assembly to vehicle assembly) 802.11p & 802.11n
 - Foreign object detection system
 - Vehicle approach, pairing, and alignment system

Photo source: companycartoday.co.uk

Lessons Learned: Guidelines for improved security / robustness

- Communication and Controls Security (internal and external)
 - Encryption for external communications, verification of information origin
 - Unique keys (not the same key for all chargers deployed)
 - Remove external jacks, disable JTAG, and secure boot loaders
 - Secure remote firmware updates capable with firmware integrity verification
 - Communication message freshness verification (identify replay attacks)
 - Segmentation of control systems (GUI, power electronics, vehicle interface, energy management)
 - Log events for security forensics
- Physical security
 - Recognition of physical access (open door) or physical manipulation
 - Tamper resistant enclosure
- Procedural
 - Manufacturer software and hardware quality assurance program

Potential Mitigation Solutions and Strategies

- Decouple DCFC load transients from grid
 - Local Energy Storage
 - Charger site DC bus with DER
 - a.k.a. "DC-as-a-service"
- DCFC internal performance monitor
 - Electrical performance and characteristics
 - Monitor communication for anomalies

Next Steps:

- Develop methodologies for cyber secure engineering design of charging systems
 - Internal controls and communications
 - External communication and security
- Quantify impacts of malicious events on electric gird networks
 - Decreased Power Quality
 - Coordinated large step change in power
- Evaluation and analysis of:
 - Xtreme Fast Charging system
 - Modular designs
 - Wireless charging system
 - Wireless communications (802.11p, 802.11n)
 - Automated power transfer control
 - Safety systems
 - Live object detection, Foreign object detection, vehicle alignment and pairing

Summary

- Cyber security of high power charging infrastructure
 - Consequence driven, Cyber-informed Engineering (CCE) process
 - Develop cyber-informed engineering methodologies and mitigation strategies
- Identified risks and threats
 - Internal power electronics controls able to be maliciously manipulated
 - High priority threats / risks when coordinated attack
- Identified vulnerability impacts
 - Poor power quality
 - Coordinated, sudden change in load
- Potential mitigation strategies and solutions
 - Local energy storage
 - Security monitor within charger system