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Relevance of Cyber Security for High Power EV Charging

1. Public Safety 
– High voltage & high current charging infrastructure

2. Potential wide spread grid impact 
– Intermittent high load: ranging from 50kW to 350+ kW
– Increasing deployment of fast chargers to meet needs of increasing EV market adoption

3. Consumer confidence in charging infrastructure
– Reliability and robustness required to reduce range anxiety
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INL Capabilities:
EV Charging Grid Integration Research

• Charging Infrastructure Evaluation
– Operational performance & dynamic response evaluation

• Conductive (L2, DCFC, XFC)
• Wireless power transfer (WPT)

• Dynamic Evaluation & Analysis
– Power hardware-in-the-loop real time emulation

• Communication
• Dynamic transients
• Power Electronics

• Cyber Security R&D
– End-to-End research methodology

• Integrated risk management
• Consequence-driven Cyber-informed engineering (CCE)
• Strategy development to close attack vector & gaps
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INL’s Capability: Identify and mitigate EV charging infrastructure vulnerabilities 
capable of compromising electric grid resiliency and reliability
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Cyber Security:
Electrified Transportation Charging Infrastructure
• Vulnerabilities (Pathways and Attack Vectors)

– System vulnerabilities
• Communications pathways (vehicle to EVSE, EVSE to smart grid, etc.)
• Controls systems (power electronics, energy management, thermal controls, etc.)
• Physical vulnerabilities (access control, electrical, thermal, etc.)

• Risk, Threats, & Impacts:
– Moderate: denial of service (no charging)
– Extensive: hardware damage / destruction
– Severe: human safety; wide-spread disruption of electrical power distribution / transmission

• Mitigation Strategies & Solutions:
– Prioritize mitigation of exploitable and high risky vulnerabilities

Charging Infrastructure
Grid Connected Vehicles

Electric Grid



EV Charging Communications and Controls
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External Attack Surfaces and Attack Vectors
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Internal Attack Surfaces and Attack Vectors
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Project Scope
• Identify and evaluate high risk vulnerabilities of 50 kW DC Fast Charging system (DCFC)

– Scope to date: internal attack vectors 
• power electronics, internal controls systems, and internal communications

• Determine extent of possible impacts
– Hardware damage
– Impacts to electric grid

• Develop cyber-informed engineering methodologies

• Evaluation of production DCFC (50 kW) with J1772 CCS and CHAdeMO
• Vehicles utilized during evaluation

– 2014 EV with CHAdeMO
– 2015 EV with J1772 CCS
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Attack Vectors - DCFC
• Minimal details presented: do not publically disclose detailed malicious information

– DCFC internal power electronics communications are disrupted
• Using off the shelf communication tools (send & receive messages)
• “Man in the middle” module was not used

– After physical access was obtained (open DCFC enclosure), connection was 
easily made to the single internal communications network 

– With remote access achieved, same control manipulation is enabled since the 
HMI is connected to the single internal communications network

• Able to manipulate modular power electronics controls system inside DCFC
1. Disrupt controls coordination between power electronics modules
2. Simultaneously turn off all power electronics modules

• Unable to directly control high speed switching inside the power electronics modules
• Unable to over charge the EV (excessive current over EV requested current)

– EV stopped charge event: shut down command or opening battery contactors
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Recent Results and Findings
• Disrupt controls coordination between 

power electronics modules
• Response of the DCFC:

– Fluctuation of:
• Input power from grid
• Input power quality

– Power Factor
– Current THD

• Output power to EV
– Results in power quality outside of 

industry limits
• Power Factor: <0.8
• Current THD: > 20%
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Recent Results and Findings
• Simultaneously turn off all power electronics 

modules

• Response of the DCFC:
– Full power (50 kW) to standby power (~300W)

• 0.020 seconds (-2.6 MW/sec)

• No impact to grid from a single DCFC shut down
• Potential impact to grid if simultaneously shut down 

of 100’s of DCFC
– ? What about 350 kW XFC
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Future Advancement:
High Power and Complexity
• Increased vulnerabilities and risk with 

increased charge power and system 
complexity

• Increased System Complexity 
– Advanced Control System of 

modular components
– Multiple communication pathways

• Increased Charge Power
– Potential increased grid interaction 

impacts
– Increased safety risks
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Wireless Charging (WPT) & 
Xtreme Fast Charging (XFC)
• XFC: Higher power

– 350 kW (500A / 1000VDC) or higher
– Liquid cable & connector cooling system
– Multiple standards still required (CCS, CHAdeMO, 

GB/T, overhead charging, etc.)
– Likely co-located with several XFC at charge depot 

(>1 MW demand on grid)

• WPT: Higher complexity controls
– Controls communication is wireless (from ground 

assembly to vehicle assembly) 802.11p & 802.11n
– Foreign object detection system
– Vehicle approach, pairing, and alignment system
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Lessons Learned: Guidelines for improved security / robustness
• Communication and Controls Security (internal and external)

– Encryption for external communications, verification of information origin
– Unique keys (not the same key for all chargers deployed)
– Remove external jacks, disable JTAG, and secure boot loaders
– Secure remote firmware updates capable with firmware integrity verification
– Communication message freshness verification (identify replay attacks)
– Segmentation of control systems (GUI, power electronics, vehicle interface, energy management)
– Log events for security forensics 

• Physical security
– Recognition of physical access (open door) or physical manipulation
– Tamper resistant enclosure

• Procedural
– Manufacturer software and hardware quality assurance program
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Potential Mitigation Solutions and Strategies
• Decouple DCFC load transients from grid

– Local Energy Storage
• Charger site DC bus with DER

– a.k.a. “DC-as-a-service”

• DCFC internal performance monitor
• Electrical performance and 

characteristics
• Monitor communication for 

anomalies
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Next Steps:
• Develop methodologies for cyber secure engineering design of charging systems

– Internal controls and communications
– External communication and security

• Quantify impacts of malicious events on electric gird networks
– Decreased Power Quality
– Coordinated large step change in power

• Evaluation and analysis of:
– Xtreme Fast Charging system

• Modular designs
– Wireless charging system

• Wireless communications (802.11p, 802.11n)
– Automated power transfer control

• Safety systems
– Live object detection, Foreign object detection, vehicle alignment and pairing
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Summary
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• Cyber security of high power charging infrastructure
– Consequence driven, Cyber-informed Engineering (CCE) process
– Develop cyber-informed engineering methodologies and mitigation strategies

• Identified risks and threats
– Internal power electronics controls able to be maliciously manipulated
– High priority threats / risks when coordinated attack

• Identified vulnerability impacts
– Poor power quality
– Coordinated, sudden change in load

• Potential mitigation strategies and solutions
– Local energy storage
– Security monitor within charger system
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