DC Fast Charging and Demand Charges

'ww.inl.go

Oregon Utility Engagement Work Group Meeting Sep 7, 2016

John Smart Idaho National Laboratory Energy Storage & Advanced Vehicles

INL/MIS-16-39824

INL's Electric Vehicle Infrastructure (EVI) Lab

- Testing and evaluation results from advanced charging systems supports:
 - Support codes and standards development and harmonization
 - Grid modernization initiative
- Measurement evaluation metrics
 - System efficiency
 - EM-field emissions
 - Power quality
 - Response to dynamic grid events
 - Cyber security vulnerability assessment
- Wide range of grid input power
 - from 120 VAC to 480 VAC 3φ
 - 400 kVA total capability
- Sub-system and full vehicle testing capabilities

https://avt.inl.gov/panos/EVLTour/?startscene=pano5141

Current Technology: DC Fast Charging

CHAdeMO and SAE CCS

- 50 kW power transfer
 - 480 VAC 3φ
 - 75 A circuit

Current Technology: DC Fast Charging

Tesla Super Charger Network

- 120 kW power transfer to each vehicle
- Charging complex

(up to 8 Super Chargers at one site location)

- 500 kVA from 12.5 kV utility electric grid feed
- Stepped down at site to 480 VAC 3ϕ (600 A)

000 TT	15.JC7164	198814	mar V 731	568212
2470GRD	(//200			
180Y /277	100 10 10	To personality	NE AUG-15	Co. 101
12479 12479 12162 11850	100 100 100			

DC Fast Charging Profile

ABB Terra 53 CJ charging a 2015 Nissan Leaf

Constant Current Mode

- 92.3% AC to DC efficiency
- -0.98 Power Factor
- 11.0% input current THD
- 6.1% Phase current unbalance

Real-world Usage of DCFCs in Aggregate

100 Blink DCFCs nationwide, Jul-Sep 2013 (trends stay the same in 2014 – 2015)

(AC kWh)

Full report: avt.inl.gov/project-type/quarterly-and-annual-reports-and-maps

Real-world Usage of DCFCs in Aggregate

12 Blink DCFCs and 56 AeroVironment DCFCs in Washington and Oregon, 2015

Electricity consumed per charging event (kWh)

Geographic Variation in Charging Frequency

12 Blink DCFCs and 45 AeroVironment DCFCs in Washington and Oregon, Jan – Dec 2014

- DCFCs in/near cities and along I-5 were used significantly more frequently than outerlying DCFCs
- Overall average events per week was 11.3
- Max average events per week was 53.6

WEST COAS

Idaho National Laboratory

Charging Frequency Over Time

12 Blink DCFCs and 56 AeroVironment DCFCs in Washington and Oregon, Jan 2013 – Dec 2015

Anatomy of a Non-residential Electric Bill

- Electric utility rates for non-residential customers are complex and based on multiple factors
- Customer will be on different rate schedule depending on how much power they demand and/or energy they consume
 - Examples: 0 30 kW; 30 200 kW; >200 kW
 - − 0−15,000 kWh; >15,000 kWh
- Everything about the rate can change based on schedule
- Generally 3 components:
 - Customer charge (aka service charge or meter charge) as a flat rate for month
 - Energy charge in \$ / kWh consumed in monthly billing cycle
 - **Demand charge** in \$ / kW...

More on Demand Charges

- The demand charge is based on the peak power demanded during a monthly billing cycle and/or during the past 12 months
- Peak power demand is calculated as the highest average power over specific time interval
 - 15 min interval is most common
 - 30 min and 60 min are also used
- Demand charge rate (\$ / kW) varies dramatically between schedules and between utilities
 - \$X/kW for first Z kW, plus \$Y/kW for demand over Z kW
 - X and Y vary from \$0 to \$30/kW, with most between \$4 to \$12/kW
 - Z is typically 0, 10, 15, 20, 30, or 50 kW
- Demand charge rate may vary based on time of day (on peak vs. off peak) and/or time of year (summer vs. winter)

Check the Fine Print

- Additional per-kW or per-kWh service charge(s) may apply
- "In the event of loads with large short-period fluctuations, [the utility] reserves the right to employ special demand determinations"
- One utility rate schedule cited an EV mileage credit of \$0.0138 per mile not sure how this was implemented

Why Demand Charges

- A demand charge is not an "add-on" so the utility can make more money
- It is part of the rate design and balanced against energy and service charges
- For high-power customers, the utility must install, maintain, and/or upgrade expensive equipment to reliably serve the load
- This cost would not be recouped for high-power, low-energy customers without a demand-based rate component

Case Study

- Estimate monthly electric bill for a small office building with DC fast charger Portland, OR
- Portland General Electric (PGE) provides rate schedules for
 - small non-residential (0 to 30 kW)
 - medium and large non-residential (31 to 200 kW)
 - large non-residential (31 to 200 kW)
- For a hypothetical business day, the facility peak demand (sans DCFC) was 11.4 kW
- 179 kWh consumed on this work day.
- Assuming 21 work days per month, the monthly energy consumed was 3,764 kWh
- Without DCFC, building fits in Schedule 32
- Without DCFC, monthly electricity cost is \$411

[Schedules 38 and 83]

[Schedule 32]

daho National Laboratory

Case Study

 If building's existing service has capacity to support the addition of DCFC, assuming a 49 kW peak power demand during billing period

	Small business with DCFC charging Schedule 38.				
DCFC Uses	DCFC kW \$	DCFC kWh \$	Business kW \$	Business kWh \$	Total Monthly
1	\$0	\$1.22	\$0	\$491	\$493
20	\$0	\$24.38	\$0	\$491	\$516
100	\$0	\$121.90	\$0	\$491	\$613

	Small business with DCFC charging Schedule 83.				
DCFC Uses	DCFC kW \$	DCFC kWh \$	Business kW \$	Business kWh \$	Total Monthly
1	\$248	\$0.67	\$66	\$258	\$572
20	\$248	\$13.38	\$66	\$258	\$585
100	\$248	\$66.89	\$66	\$258	\$638

Case Study

- If a new service is needed for the DCFC
- Schedule 38 has no demand charge so it is selected, with the only added cost from the energy consumed by the DCFC

separa			Portland sr		
DCFC Uses	DCFC kW \$		Business kW \$	Business kWh \$	Total Monthly
1	\$0	\$1.22	\$0	\$411	\$412
20	\$0	\$24.38	\$0	\$411	\$435
100	\$0	\$121.90	\$0	\$411	\$533

Cost for similar building in Phoenix, AZ using Arizona Public Service rates

Monthly costs for DCFC and business separately metered on Schedule E-32 S.					
DCFC Uses	DCFC kW \$	DCFC kWh \$	Business kW \$	Business kWh \$	Total Monthly
1	\$482	\$0.94	\$172	\$388	\$1,043
20	\$482	\$18.81	\$172	\$388	\$1,061
100	\$482	\$65.10	\$172	\$388	\$1,107

Managing Demand Charges

Site host

- Talk with their utility to choose the best rate schedule
- For facility with large load, consider using TOU pricing or charge scheduling to prevent charging to occur coincident with facility peak

DCFC service provider

- Implement options for TOU pricing or charge scheduling/demand response
- Consider options for automatically reducing charge rate to allow "not-quite-as" fast charging to stay below facility peak, demand charge threshold (if any), or otherwise minimize demand charge
- Add an energy storage system that charges off peak and discharges to provide or supplement on-peak charging

Utility

Consider alternate rate designs that minimize demand charges to encourage EV adoption

References

Slide 5 – DC Fast Charger Fact Sheet: ABB Terra 53 CJ charging a 2015 Nissan Leaf, avt.inl.gov/sites/default/files/pdf/evse/ABBDCFCFactSheetJune2016.pdf

Slide 7 – Electric Vehicle Charging Infrastructure Summary Report: July - September 2013, avt.inl.gov/project-type/quarterly-and-annual-reports-and-maps

Slide 9 – Direct Current Fast Charger Usage in the Pacific Northwest During 2014, avt.inl.gov/sites/default/files/pdf/evse/INL_WCEH_DCFC_Usage_2014.pdf

Slides 11-13 – DC Fast Charge-Demand Charge Reduction, May 2012, avt.inl.gov/sites/default/files/pdf/EVProj/DCFastCharge-DemandChargeReductionV1.0.pdf

Slides 15 -17 – What is the Impact of Utility Demand Charges on a DCFC Host? June 2015, avt.inl.gov/sites/default/files/pdf/EVProj/EffectOfDemandChargesOnDCFCHosts.pdf

Smart Boys Like EV Charging Infrastructure

(Now if only Dad would only buy them an EV...)

