Review of FY-2015 GITT Related Activities at INL: August 2014

www.inl.gov

Jim Francfort Idaho National Laboratory August 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information

INL/MIS-14-32718

- U.S. Department of Energy (DOE) laboratory
- 890 square mile site with 4,000 staff
- Support DOE's strategic goal:
 - Increase U.S. energy security and reduce the nation's dependence on foreign oil
- Multi-program DOE laboratory
 - Nuclear Energy
 - Fossil, Biomass, Wind, Geothermal and Hydropower Energy
 - Advanced Vehicle and Battery Testing
 - Homeland Security and Cyber Security

Vehicle / Infrastructure Testing Experience

- 144 million test miles accumulated on 11,700 electric drive vehicles and 16,600 charging units, not including a new analysis project:
 - Data for 16,190 additional PEVs being received by INL
- Since 1994, INL staff have benchmarked PEVs in field operations via data loggers & data bases
 - EV Project: 8,228 Leafs, Volts and Smarts, 12,363 EVSE and DCFC, reporting 4.2 million charge events, 124 million test miles. At one point, 1 million test miles every 5 days
 - Charge Point: 4,253 EVSE reporting 1.5 million charges
 - PHEVs: 15 models, 434 PHEVs, 4 million test miles
 - EREVs: 2 model, 156 EREVs, 2.3 million test miles
 - HEVs: 24 models, 58 HEVs, 6.4 million test miles
 - Stop/start hybrid vehicles: 3 models, 7 MHVs, 608,000 test miles
 - NEVs: 24 models, 372 NEVs, 200,000 test miles
 - BEVs: 48 models, 2,000 BEVs, 5 million test miles
 - UEVs: 3 models, 460 UEVs, 1 million test miles
 - Other testing: hydrogen ICE vehicle and infrastructure testing

- I-5 Travel corridor study of DCFC (DC Fast Chargers) and Level 2 use
 - DCFC & Level 2 data from EV Project, ChargePoint and Aeronvironment blended and driver behaviors analyzed
 - This and other analysis required venue standardization across all projects. This has been completed
 - I-5 data has been loaded and analysis started. Initial results should be available shortly
 - Requested by U.S., Washington, and Oregon DOTs, and various additional stakeholders
- Smart and less than optimally smart (Dumb) EVSE Testing
 - Completed test of GE Smart EVSE with VTO funds. This is one of four Smart EVSE developed via DOE-OE FOA
 - Testing includes cyber security testing of all four EVSE, with reports only going to manufacturer
 - Blink EVSE previously cyber security tested
 - A filtered final report for all five EVSE will be public

- OEM PEV electric Vehicle Miles Traveled (eVMT) analysis
 - Ford, GM, Toyota and Honda requested INL support identifying eVMTs for PHEVs, EREVs and BEVs
 - Total vehicle miles traveled (VMT)
 - eVMT per vehicle month
 - eVMT for each vehicle
 - Most of the data for the 16,190 PEVs have been received by INL
 - Ford: 14,000 Fusion & C-Max PHEVs, & Focus BEVs
 - Honda: 190 Accord PHEVs & 500 Fit BEVs
 - Toyota: 1,500 Prius PHEVs (waiting on NDA)
 - In addition to the existing INL's EV Project data sets for this study
 - GM: 1,867 Volt EREVs
 - Nissan: 4,039 Leaf BEVs
 - 22,000 total vehicles from across the U.S.A. in the eVMT study

- <u>EV Project (ARRA)</u>
 - John Smart will detail
 - Car Charging plans on providing data to INL through Dec. 2015
- SAE Interoperability Studies
 - Approximately 30 Level 2 EVSE and 10 vehicles
 - Conducted at Intertek for SAE
 - Feedback results to SAE for their sharing with manufacturers
 - Identifies non-interoperabilities for SAE J1772 compliant vehicles and EVSE
 - INL has technical over-site. Conducted as part of the Advanced Vehicle Testing Activity
 - Second study will use DCFC
 - Charge port protocol questions will have to be resolved

- DC Fast Charging with Distributed Energy Storage in California
 - 55 DCFC with distributed energy storage
 - 55 additional DCFC with no storage
 - INL will blend PEV and DCFC data
 - Preliminary approvals completed and NDAs being signed
 - INL analysis support requested by vehicle and charger industries
- NYSERDA EVSE
 - Data collection from approximately 500 EVSE in NY State is ongoing. EVSE reports generated for NYSERDA. Multiplicity of EVSE providers. NYSERDA requested INL support
- DOD PHEV V2G Project
 - Downsized from 375 vehicles to 75. Large percentage are supposed to be Via Motors PHEVs. This project appears to continue to have technology and funding limitations
 - FY15 start
 - INL analysis of final data set requested by DOD

GITT Related Projects: Facebook Workplace Charging

- Study of the usage of workplace charging stations at Facebook's office campus in Menlo Park, CA from May 1 to August 15 (2013)
- Charging stations included
 - 12 ChargePoint EVSE units capable of AC Level 1 and AC Level 2 charging rates (J1772 & NEMA ports)
 - 10 Blink AC Level 2 EVSE (electric vehicle supply equipment) units (J1772 port)
 - 1 Blink DC fast charger (two CHAdeMO ports)
 - Part of The EV Project & ChargePoint America project
- The EVSE were installed over time as the number of employees owning PEVs and the demand for workplace charging increased

Facebook Workplace Charging Summary

- Drivers overwhelmingly preferred AC Level 2 charging over AC Level 1 charging
- When drivers arrived at these units and both Level 1 and Level 2 options were available, they chose to use the Level 2 cord 98% of time
- With only a few exceptions, the Level 1 outlet was only used if the Level 2 cord was already connected to another vehicle
- The AC Level 2 charging units were the most heavily utilized, accounting for 83% of the charging events
- The AC Level 2 charging units were used heavily during the work day, averaging 8.7 hours connected per cord per work day

Facebook Workplace Charging Summary

- Drivers tended to stay connected to Level 2 cords for around 4 hours or around 9 hours – either half a work day or an entire work day
- Most of the time, vehicles fully charged their batteries in less than 5 hours
- The DC fast charger (DCFC) was typically used between 2 and 6 times per work day for 24 minutes or less per charging event
- 11% of the time when a DC fast charge event ended and another event began on the same work day, a vehicle was already connected to the second DC fast charger cord prior to the end of the first vehicle's charging event

- <u>Chrysler RAM PHEV Demonstration (ARRA)</u>
 - Second "stage" of data collection. Continuing data transfer to INL. Project may extend into 2015
 - Number of charging events at Level 1-654 & Level 2 2,312
 - Charging energy (AC kWh) consumed at Level 1 2,757 & Level 2 - 12,613
 - Percent of total charging energy from L 1- 18% & L 2 82%
 - Average time to charge from 20% to 100% SOC Level 1 11.53 hours & Level 2 - 2.17 hours
- <u>NYC Nissan Leaf taxi fleet</u>
 - Small fleet of Leafs in NYC taxi fleets
 - Uses DCFC and Level 2
 - Extended into 2015
 - Nissan EV200 data collection a possiblity

- <u>Via Motors PHEVs</u> 4X4 pickup and van conversions
 - ARRA project with EPRI, Via & SCAQMD. CARB certification anticipated soon week
 - Approximately 350 PHEVs, shipping started
 - EPRI data logger system will be used via Smart Phone
 - Examine grid use and petroleum reduction
- <u>Echo Automotive</u> PHEV Retrofit
 - Add 9 kWh Li-ion battery to ICE pickups and Vans
 - Echo telematics system will send data for analysis to INL
 - Examine grid use and petroleum reduction benefits of retrofit ICE vans

GITT Related Projects: Codes and Standards

- J2954 Wireless Charging Standards
 - Active participation in J2954 and contribution based on testing experience, including debris testing
 - INL published only independent test results for a wireless charging system (Evatran)
 - INL is actively searching "affordable" additional test subjects
- J2954 Wireless Charging FCC Standards
 - Considering FCC testing at INL or Intertek Michigan facility to support SAE requirements driven by FCC requirements
 - Possibly demonstrate zero signal at 10 meters and zero signal at 300 metes in outdoor test environment
- Barney Carlson can expand

daho National Laboratory

GITT Related Projects: Codes and Standards

- SAE J2894 Power Quality
 - Tasked with developing requirements and test procedures to ensure EVSE do not cause power quality, nor are impacted by them. Based on INL test experience
 - Don Scoffield will detail
- NIST Fueling And Submetering Committee
 - Participation on the National Institute of Standards and Technology led U.S. National Work Group on Measuring Systems for Electric Vehicle Fueling and Submetering
 - Don Scoffield will detail

Idaho National Laboratory

- DC Fast Charging onroad and lab testing of six Nissan Leafs
 - 50,000 miles accumulated on two Level 2 and two DCFC Nissan leafs. Six battery tests performed per vehicle to date. Track testing identifies range loss
 - Two batteries in INL lab testing. 1 each Level and DCFC
 - 39.8 DC kWh/mi delta for min vs. max month. Max month 19% higher than min month

DC Fast Charging – onroad and lab testing of six Nissan Leafs

Range & Capacity Losses From New and at 50,000 miles

- DCFC Acceptance Rates at Various Temperatures
 - Objective is to quantify temperature impacts on grid use
 - Develop formal testing regime to examine battery charge acceptance rates at various ambient temperatures during DCFC and Level 2 charging
 - Results are preliminary as the tests were undertaken to identify needed test procedures
 - 2013 Nissan Leaf at 6,000 miles was used
 - 2012 Mitsubishi i-MiEV at 5,700 miles was used
 - Identified additional instrumentation needed and proper test regime

DCFC Acceptance Rates at Various Temperatures

• 2013 Leaf - DC Fast Charging @ 0, 25 & 50 C

- After 30 minutes:
 - 50 C: 77% SOC
 - 25 C: 77% SOC
 - 0 C: 53% SOC
- At charge end:
 - 50 C: 87% SOC at 62 minutes
 - 25 C: 91% SOC at 67 minutes
 - 0 C: 91% SOC at 121 minutes
- Total kWh:
- 50 C: 17.9 kwh
- 25 C: 18.2 kWh
- 0 C: 17.4 kWh

2013 Leaf - DC Fast Charging @ 0, 25 & 50 C

Preliminary Data Results DC kW

Autonomous and Connected Vehicles Analysis

- <u>Autonomous and Connected Vehicles Work Proposed</u>
 - Paper studies identify the potential positives and negatives that come with the use of greater connectivity and autonomous technologies
 - Impacts on onboard energy storage requirements
 - Likely need to increase vehicle accessory power
 - Weight penalties or possible weight reductions
 - Fuel economy impacts based on the INL managed vehicle mass reduction project
 - What codes and standards must be revised or introduced
 - Can INL drive data can be used to characterize current drive patterns and energy charging needs
 - Cyber security analysis to identify potential security issues and vulnerabilities to vehicles and grid connections
 - What types of test programs and testing methodologies will be needed to quantify fuel use benefits or penalties

Idaho National Laboratory

Additional Information

For publications and general plug-in electric vehicle performance, visit http://avt.inl.gov

Funding provided by DOE's Vehicle Technologies Office