daho National Laboratory **ChargePoint**

blink

U.S. Department of Energy's Vehicle Technologies Program

White House, DOE, DOT, SAE -Vehicle Data Jam

Jim Francfort – Idaho National Laboratory Kumar Gogineni – ChargePoint Tom Garetson – ECOtality North America

Vehicle Data Jam Detroit, Michigan April 18, 2013

This presentation does not contain any proprietary or sensitive information

- U.S. Department of Energy (DOE) laboratory
- 890 square mile site with 4,000 staff
- Support DOE's strategic goal:
 - Increase U.S. energy security and reduce the nation's dependence on foreign oil
- Multi-program DOE laboratory
 - Nuclear Energy
 - Fossil, Biomass, Wind, Geothermal and Hydropower Energy
 - Advanced Vehicles and Battery Development
 - Homeland Security and Cyber Security

AVTA Participants

- DOE's Advanced Vehicle Testing Activity (AVTA), part of the Vehicle Technologies Program (VTP) conducts field-, test track-, and laboratory-based testing of light-duty vehicle systems and subsystems
 - Idaho National Laboratory manages the AVTA for VTP
 - ECOtality provides testing support via a competitively bid NETL (National Energy Testing Laboratory) contract
- For the EV Project, ECOtality is the project lead and INL provides data collection, analysis and dissemination support
- Test partners include electric utilities, Federal, state and local government agencies, private companies, and individual vehicle owners

AVTA Goals

- The AVTA goals
 - Petroleum reduction and energy security
 - Benchmark technologies that are developed via DOE research investments
- Provide benchmark data to DOE, National Laboratories (ANL, NREL, ORNL, PNNL), Federal Agencies (DOD, DOI, DOT, EPA, USPS), technology modelers, R&D programs, vehicle manufacturers (via USCAR's VSATT, EESTT, GITT), and target and goal setters
- Assist fleet managers, via Clean Cities, FEMP and industry gatherings, in making informed vehicle and infrastructure deployment and operating decisions

Vehicle / Infrastructure Testing Experience

- 93 million test miles accumulated on 12,202 electric drive vehicles representing 119 models. 1 million miles / week
- EV Project: 8,715 Leafs, Volts and Smart EVs, 11,208 EVSE and DC Fast Chargers (DCFC), 74 million test miles
- ChargePoint: 3,908 EVSE reporting 761,000 charge events
- PHEVs: 15 models, 434 PHEVs, 4 million test miles
- EREVs: 2 model, 156 EREVs, 2 million test miles
- HEVs: 24 models, 58 HEVs, 6.4 million test miles
- Micro hybrid (stop/start) vehicles: 3 models, 7 MHVs, 608,000 test miles
- NEVs: 24 models, 372 NEVs, 200,000 test miles
- BEVs: 48 models, 2,000 BEVs, 5 million test miles
- UEVs: 3 models, 460 UEVs, 1 million test miles
- Other testing includes hydrogen ICE vehicle and infrastructure testing

INL Vehicle/EVSE Data Management Process

Data Collection, Security and Protection

- All vehicle, EVSE, and PII raw data is legally protected by NDAs (Non Disclosure Agreements) or CRADAs (Cooperative Research and Development Agreements)
 - Limitations on how proprietary and personally identifiable information can be stored and distributed
 - Raw data, in both electronic and printed formats, is not shared with DOE in order to avoid exposure to FOIA
 - Vehicle and EVSE data collection would not occur unless testing partners trust INL would strictly adhere to NDAs and CRADAs
 - Raw data cannot be legally distributed by INL

EV Project Goal, Locations, Participants, and Reporting

- Goal: Build and study mature charging infrastructures and take the lessons learned to support the future streamlined deployment of grid-connected electric drive vehicles
- ECOtality is the EV Project lead, with INL, Nissan and Onstar/GM as the prime partners, with more than 40 other partners such as electric utilities
- 40 different EV Project reports are generated quarterly for the general public, DOE, ECOtality, project participants, industry, regulatory organizations, as well as per special requests

EVSE Data Parameters Collected per Charge Event – EV Project & ChargePoint

- Data from ECOtality's Blink & other EVSE networks
- Connect and Disconnect Times
- Start and End Charge Times
- Maximum Instantaneous Peak Power
- Average Power
- Total energy (kWh) per charging event
- Rolling 15 Minute Average Peak Power
- Date/Time Stamp
- Unique ID for Charging Event
- Unique ID Identifying the EVSE
- And other non-dynamic EVSE information (GPS, ID, type, contact info, etc.)

EV Project – Vehicle Data Parameters Collected per Start/Stop Event

- Data is received via telematics providers from Chevrolet Volts and Nissan Leafs
- Odometer
- Battery state of charge
- Date/Time Stamp
- Vehicle ID
- Event type (key on / key off)
- GPS (longitude and latitude)

Recorded for each key-on and key-off event

 Additional data is received monthly from Car2go for the Smart EVs

EV Project Data Complexity

- The EV Project has 44 Databases (DB)
 - Nissan Leaf & GM/OnStar Volt
 - ECOtality Blink, Aerovironment & EPRI EVSE
 - Admin (look up tables, territories, zips codes, QA) parameters, etc.)
 - Each of the above six DBs has three versions (process, stage & production) = 18 DBs
 - Four GIS DBs for the Leafs, Volts, Blink EVSEs, and **Base (streets, utility service territory areas, etc.)**
 - Above 22 (18 + 4) DBs exist on two systems = 44 DBs
- Hundreds of algorithms and thousands of lines of code are required to generate 56,000 data parameters for populating 132 pages of public quarterly reports
- INL must blend multiple data streams, from multiple sources, all on different delivery schedules
- This is not a flat file, spreadsheet experience and this is **NOT a simple task** 11

EV Project Vehicles / Miles, 3/17/13

- 8,715 vehicles reporting data
 - 6,329 Leafs. 73%
 - 1,255 Volts. 24%
 - 330 Smart EVs. 4%
- 73.8 million total miles
 - Leafs 81%
 - Volts 18%
 - Smart EVs 2%
- 173,000 test miles per day = 1 million miles every 5.8 days

EV Project EVSE Deployed / Use, 3/17/13

11,208 total EVSE

- 8,083 (72%)
 Residential EVSE
- 3,049 (27%) nonresidential EVSE
- 76 (1%) DCFC
- 2.2 million charge events
 - 2,025,000 (91%)
 Residential EVSE
 - 173,000 (8%) nonresidential EVSE
 - 20,000 (1%) DCFC

EV Project – National Data

4rd quarter 2012 Data Only

	<u>Leafs</u>	<u>Volts</u>
 Number of vehicles 	3,762	1,021
 Number of Trips 	969,853	369,118
 Distance (million miles) 	6.7	3.0
 Average (Ave) trip distance 	6.9 mi	8.1 mi
 Ave distance per day 	29.2 mi	40.5 mi
 Ave number (#) trips between charging events 	3.8	3.5
 Ave distance between charging events 	26.3 mi	28.2 mi
 Ave # charging events per day 	1.1	1.4

* Note that per day data is only for days a vehicle is driven

EV Project – EVSE Infra. Summary Report

4th quarter 2012

- Ave hours V connected R2 WD
- Ave hours V connected R2 WE
- Ave hours V drawing power R2 WD
- Ave hours V drawing power R2 WE
- Ave AC kWh/charge event R2 WD
- Ave AC kWh/charge event R2 WE
- Ave hours V connected P2 WD
- Ave hours V connected P2 WE
- Ave hours V drawing power P2 WD
- Ave hours V drawing power P2 WE
- Ave AC kWh/charge event P2 WD
- Ave AC kWh/charge event P2 WE
- R: residential, P: public, WD: weekday, WE: weekend,
 2: Level 2 EVSE, and V: vehicle

National.

12.1 hours

12.2 hours

2.4 hours

2.1 hours

8.6 AC kWh

7.4 AC kWh

5.9 hours

4.1 hours

2.5 hours

2.5 hours

- 8.4 AC kWh
- 6.4 AC kWh

EV Project – EVSE Infra. Summary Report National Residential and Public Level 2 Weekday EVSE

- 4th Quarter 2012
- Residential and public connect time and energy use are fairly opposite profiles. Note different scales National Residential Connect Time **National Public Connect Time**

National Residential Demand

National Public Demand

EV Project – EVSE Infra. Summary Report

- Residential Level 2 Weekday EVSE 4th Quarter 2012
- San Diego and San Francisco, with residential L2 TOU rates, are similar to national and other regional EVSE connect profiles

San Francisco

Washington State

17

EV Project – EVSE Infra. Summary Report

- Residential Level 2 Weekday EVSE 4rd Quarter 2012
- TOU kWh rates in San Diego and San Francisco clearly impact when vehicle charging start times are set

San Francisco

U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES PROGRAM

ChargePoint [®]America Vehicle Charging Infrastructure Summary Report

Project Status to Date through: June 2012

Charging Unit - By State	Residential	Private Commercial	Public	Not Specified	Charging Units Installed to Date ¹	Number of Charging Events Performed ²	Electricity Consumed (AC MWh)
California	791	39	518	3	1,351	213,758	1,487.7
Connecticut	11	-	-	-	11	2,569	15.1
District of Columbia	-	16	16	-	32	718	5.4
Florida	43	10	228	2	283	9,323	55.2
Maryland	18	7	46		71	5,956	37.9
Massachusetts	23	7	74	-	104	4,133	35.5
Michigan	252	14	172	-	438	60,436	407.1
New Jersey	51	2	17	-	70	15,397	95.7
New York	23	88	102	-	213	17,401	139.6
Texas	51	9	227		287	17,759	114.4
Virginia	23	17	43	-	83	10,061	65.0
Washington	12	7	123	-	142	8,153	50.0
Total	1,298	216	1,566	5	3,085	365,664	2,508.7

ChargePoint America Charging Unit Distribution Project to Date

¹ Includes all charging units that were in use by the end of the reporting

² A charging event is defined as the period when a vehicle is connected to a charging unit, during which period some power is transferred

ChargePoint America ARRA Project

- Conducted by Coulomb
- Project to Dec. 2012
- 3,908 EVSE installed and reporting data
 - 1,763 Residential
 - 193 Private / commercial
 - 1,940 Public
 - 12 unknown
- 760,995 charge events
- 5,359 AC MWh

10/9/2012 7:46:58 AM INL/MIS-11-24311 Page 1 of 8

ChargePoint America ARRA Project

- Oct Dec 2012 data
- 3,541 units
- Percent time vehicle connected
 - Residential 47%
 - Private/com 24%
 - Public 9%
- Percent time drawing
 power
 - Residential 9%
 - Private/com 5%
 - Public 4%
- EVSE data only

- Public is open access. Commercial are limited access
- Public and commercial reflect at work charging
- Residential reflects end of day return-to-home charging
- Note difference in scales

Summary

- Combined, largest infrastructure and plug-in electric vehicle research in the world with 24,000 data sources
- The data allows researchers to understand both how vehicles are operated and charged
 - Supports studies to understand where future infrastructure should be placed
 - Where infrastructure is and is not used
 - How operators drive different technologies
 - Impacts from public infrastructure revenue models
 - Identify opportunities to incorporate smart charging
 - Identify grip impacts and demand costs
 - Problems with vehicles and infrastructure that both meet the same SAE standard
- There are many legal, PII, proprietary, and investment constraints that restrict the use of vehicle and charging infrastructure data

-cusideboll+

ChargePoint, Inc April 18, 2013

Copyright © 2013 ChargePoint, Inc. | Proprietary and Confidential | Do Not Distribute

ChargePoint: The Leader

- 70%+ of the public charging station market
- 1,700+ companies providing charging via ChargePoint
- 11,000+ charging spots
- 937+ Megawatt hours (MWh) dispensed each month
- 2,400,000 gallons of gas avoided (annual equivalent)
- 35 million lbs of CO₂ emissions prevented
- 4,500+ times every day drivers plug into a ChargePoint station
- 54,000+ mobile app downloads
- 14 countries

1,700+ ChargePoint Customers

Major Employers

Google, Microsoft, 3M, Adobe, Dell, GM, SAP, Netflix, Johnson & Johnson, MasterCard, eBay, and more

MDUs/Apartments

Equity Residential, The Keller Group, TGI, The Tower Companies, Alliance Residential, and more

Utilities & EV Service Providers

LA Dept of Water & Power, San Diego Gas & Electric, Austin Energy, Toronto Hydro, Hydro Quebec, and more

Government & Fleet

New York, San Francisco, LA, Boston, Orlando, Washington DC, Connect by Hertz, Google, and more

Retail, Hotels & Shopping Centers

Walgreens, Kohl's, Whole Foods, Meijer, Ritz-Carlton, Hyatt, Best Western, Bellevue Square (WA), Fashion Island (CA), and more

Regional & National Parking Services

Edison Properties, Sylvan Parking, Priority Parking, InterPark, and more

Charging Services

- Charging Stations
- Billing Software
- Reservations
- Smartphone Apps
- Advertising
- Authentication
- Asset Management
- Energy Management
- 24/7 Driver Care
- Station Owner Care
- Monitoring & Statistics
- Remote Maintenance

ChargePoint Open Network Solution

For Drivers

- Charging Session Info
- Usage History
- Monthly statement
- Notifications
- Finding Charging Stations
- Reservations
- Smartphone Apps
- 24/7 Driver Care
- Monitoring & Statistics
- Remote Maintenance

For Station Owners

- Charging Stations
- Billing Software
- Reservations
- Smartphone Apps
- Advertising
- Authentication
- Asset Management
- Energy Management
- 24/7 Driver Care
- Station Owner Care
- Monitoring & Statistics
- Remote Maintenance
- Charging Session Info
- Usage History
- Monthly statement
- Notifications

For OEM's

- Charging Stations
- ChargePoint Software
- Database of charging stations
- Reservations
- Smartphone Apps
- 24/7 Driver Care
- Monitoring & Statistics
- Remote Maintenance

ChargePoint Connections

Connecting Drivers with Retailers, Employers, Utilities, and Others

- Drivers declare affiliations via their ChargePoint account
 - Opt-in for rewards, custom benefits
 - Single account for many Connections
- Examples
 - Connect with Employer to access private stations
 - Connect with Retailers for benefits (e.g., charging credits, advertising, discounts, offers)
 - Connect with EVSP/Utility for preferred rates

Thank You

www.chargepoint.com

blink

 Every owner of a blink home-charger that registers with the blink network and agrees to the terms of use, can view their utilization through gauges and dashboards that are

Clicking on the ECOtiles provides additional information about how this data is calculated

My Dashboard

My Dashboard

[Add New Gauge]

•

37

Total Usage

x

Download CSV of Usage Data

Gallons of fuel saved assumes that 1% of US electricity generation comes from petroleum and can thus be neglected. The number of kWh used to power the EV, 340 Wh/mile electricity consumption of the EV, and the 28.6 mpg fuel economy of the comparable, conventional vehicle are used in the formula for Gallons of Fuel saved:

Gallons of Fuel Saved = (Total kWh Used*1000)/340/28.6

• There are several pre-generated graphs that can be chosen to add to a residential dashboard.

Add New Gauge

Name	
Current Charge State	
Last Charge Summary	
Location Charge History	
Monthly Plugin History	
Weekly Charge Hours	
Weekly Usage Profile	

Description: This gauge shows EVSE unit plugin history for the current month. Each time a vehicle is plugged-in, the plugin information for that day is recorded.

×

• Exporting charging data can be done through the following:

Manage Your Charge	216978 - 216978 💌	
0: Available		
	Last Charge Energy Software Updates Model/Hardware Rev/Revision 2.37 kWh Software is up to date WN-30KGCE/X8 The amount of energy used by the charger during your Iast charge in kilowatt-hours	
Location Details	age	
Service Schedule	Start Date:	
Usage Stats	VIEW TABULAR DATA	

k

39

Commercial blink owners get the same tiles and are allowed to view or pull data from any charger they own.

Acknowledgement

This work is supported by the U.S. Department of Energy's EERE Vehicle Technologies Program

More Information

http://avt.inl.gov

This presentation will be posted in the publications section of the above website, alphabetically as "White House, DOE, DOT, SAE - Vehicle Data Jam"

INL/MIS-13-28858