U.S. Department of Energy's Vehicle Technologies Program -

Clean Cities 2011 Stakeholders Summit - Electric Drive Vehicles and Charging Infrastructure Demonstrations, Analysis and Lessons Learned

Jim Francfort

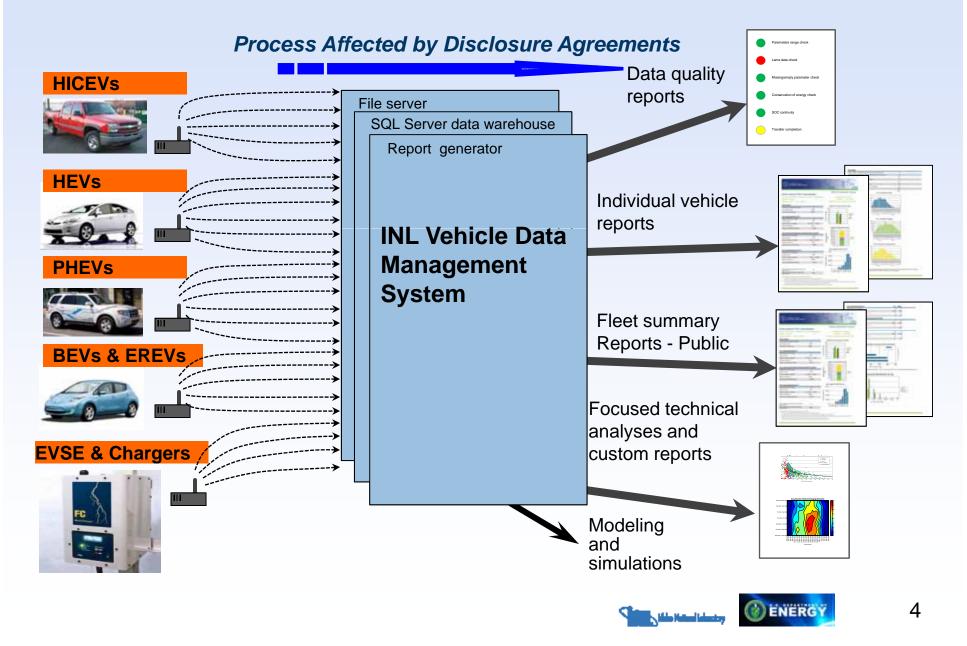
U.S. DOE Clean Cities Stakeholders Summit Indianapolis, Indiana June 30, 2011

This presentation does not contain any proprietary or sensitive information

AVTA Participants and Goals

• Participants

- The Advanced Vehicle Testing Activity (AVTA) is part of DOE's Vehicle Technologies Program (EERE). The AVTA also supports Clean Cities activities
- The Idaho National Laboratory (INL) conducts the lightduty vehicle portion of the AVTA per DOE guidance
- 100+ fleets and organizations as testing partners
- Some of these testing activities are conducted with ECOtality North American
- The AVTA goal Petroleum reduction and energy security
 - Provide benchmark data to technology modelers, research and development programs, vehicle manufacturers (via VSATT), and target and goal setters
 - Assist fleet managers in making informed vehicle and infrastructure purchase, deployment and operating decisions



Vehicle Testing Experience

- Plug-in hybrid electric vehicles: 14 models, 430 PHEVs, 5 million test miles
- Extended Range Electric Vehicles: 1 model, 150 EREVs, 400,000 test miles
- Hybrid electric vehicles: 19 models, 50 HEVs, 6 million test miles
- Micro hybrid vehicles: 3 models, 7 MHVs, 200,000 test miles
- Neighborhood electric vehicles: 24 models, 372 NEVs, 200,000 test miles
- Battery electric vehicles: 47 models, 1,600 BEVs, 5 million test miles
- Urban electric vehicles: 3 models, 460 UEVs, 1 million test miles
- 18 million test miles accumulated on 2,700 electric drive vehicles representing 110 models

INL Vehicle Data Management Process

Example: Vehicle/Infrastructure Data Sources

	HEV: 12 vehicle models, 1 data logger
Vehicle	HICE: 1 vehicle model, 1 data logger
time-history data	Conversion PHEVs: 8 vehicle models, 3 data loggers
(second-by- second)	Ford Escape PHEV, Ford wireless logger
	Chrysler Ram PHEV, Chrysler wireless logger
Vehicle event data	Nissan Leaf, Nissan telematics
(key-on, key-off)	Chevrolet Volt, OnStar telematics
Charger event and 15 min	ECOtality Blink networked level 2 EVSE, DC/fast chargers
time-history data	Coulomb ChargePoint networked level 2 EVSE

Managing 26 different data models

Data Collection: Harder Than You'd Think.....

- Field data collection and processing is deceivingly complex due to remoteness, and the many technical, environmental and human variables
 - 60 mpg PHEV in charge depleting mode and 130 mpg in charge sustaining mode - 6,000 foot mountain
 - 60 hour trips So quiet, does it shut itself off?
 - <-10 to >140°F ambient conditions
 - Firmware, software and component upgrades
 - GPS and the advanced metal bucket technology
 - Is a Key-On event for rolling up a window or moving a vehicle ten feet considered a trip event?
 - 53-foot rule = 40% trip reduction result and 0.1% impact

Data Security and Protection

- All raw vehicle and EVSE data, and personal information protected by NDAs (Non Disclosure Agreements) or a CRADAs (Cooperative Research And Development Agreements), resulting in:
 - Limitations on how the proprietary data can be distributed, stored, and used
 - No raw data can or will be distributed by INL
 - Raw data, in both electronic and printed formats, cannot be shared with DOE in order to avoid exposure to FOIA
- Vehicle and EVSE data collection would not occur unless the above limitations are strictly adhered by INL
- INL can bin data results into usable information formats for analysis in research partnerships (electric utilities and DOE labs?)
- No raw data can be shared by INL

EV Project Locations (Largest Data Collection Activity)

EV Project Residential Infrastructure

- Deploy 8,300 battery electric vehicles with data loggers
 - 5,700 Nissan Leaf battery EVs
 - 2,600 Chevrolet Volt extended range EVs
- Install 8,300 level 2 residential EVSE with data loggers

EV Project Commercial Infrastructure

- Install ~5,300 level 2 EVSE with data loggers
 - Retail locations
 - Municipal locations
 - Employer locations
- Deploy 200 Dual Port DC Fast Chargers with data loggers

EV Project – Eleven Infrastructure Data Parameters Collected per Charge Event

- Date/Time Stamp
- Unique ID for Charging Event
- Unique ID Identifying the EVSE may not change
- Connect and Disconnect Times
- Start and End Charge Times
- Maximum Instantaneous Peak Power
- Average Power
- Total energy (kWh) per charging event
- Rolling 15 Minute Average Peak Power
- And other non-dynamic EVSE information (GPS, ID, type, contact info, etc.)

EV Project – Seven Vehicle Data Parameters Collected per Start/Stop Event

- Date/Time Stamp
- Vehicle ID
- Event type (key on / key off)
- Odometer
- Battery state of charge
- GPS (longitude and latitude)
- Fuel consumption (some vehicles)
- Recorded for each key-on and key-off event

ENERGY Energy Efficiency & Renewable Energy

EV Project Nissan Leaf Vehicle Summary Report

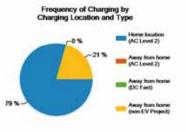
Region: All

Number of vehicles: 35

Reporting period: January 2011 through March 2011

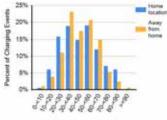
Vehicle Usage

Number of trips	3,364
Total distance traveled (mi)	21,708
Avg trip distance (mi)	5.8
Avg distance traveled per day when the vehicle was driven (mi)	32.5
Avg number of trips between charging events	3.3
Avg distance traveled between charging events (mi)	21.5
Avg number of charging events per day when the vehicle was driven	1.5

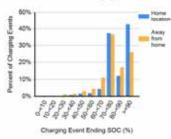

Home charging location	Away-from-home charging locations			
AC level 2 charging	AC level 2 charging	DC fast charging	Non-EV Project charging	
800	0	0	208	
79%	0%	0%	21%	
8,126	0	0	-	
100%	0%	0%	2	
5.25	0	0	-	
100%	0%	0%	-	
	AC level 2 charging 800 79% 8,125 100% 5.25	location char AC AC level 2 level 2 charging charging 800 0 79% 0% 8,126 0 100% 0% 5,25 0	Iocation Charging locat AC AC DC level 2 level 2 fast charging charging charging 800 0 0 79% 0% 0% 8,126 0 0 100% 0% 0% 6,25 0 0	

Charging Completeness	Home charging location	Away-from-home charging locations		
	AC level 2 charging	AC level 2 charging	DC fast charging	Non-EV Project charging*
Number of complete charging events*	199	0	0	54
Percent of charging events of the same type and location	43%	0%	0%	26%
Number of partial charging events*	268	0	0	154
Percent of charging events of the same type and location	57%	0%	0%	74%

¹ Charging level, time plugged-in, and electricity consumed are not available from Non-EV Project charging units. Charging level could be AC level 1, AC level 2, or DC fast charging.


² Complete charging events end with battery state of charge at 90% to 100% (for charging events with SOC reported)

Partial charging events end with battery state of charge below 90% (for charging events with SOC reported)


Project

Battery State of Charge (SOC) at the Start of Charging Events

Charging Event Starting SOC (%)

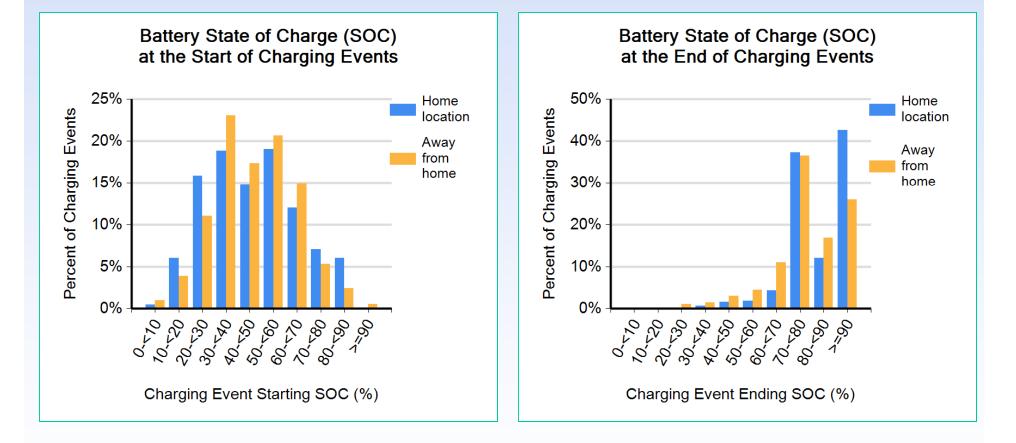
Battery State of Charge (SOC) at the End of Charging Events

EV Project – Nissan Leaf Usage Report

 Overall project profiles

SINL Material Laboratory

5/19/2011 3:47:13 PM INL/MIS-11-21904


EV Project – Nissan Leaf Usage Report

- Vehicle Usage 1st quarter 2011 Number of Trips 3,364 Total distance traveled (miles) 21,706 mi 5.8 mi – Ave trip distance Ave distance per day when driven 32.5 mi – Ave # trips between charging events 3.3 Ave distance traveled between charging 21.5 mi events Ave # charging events per day when a vehicle was driven 1.5 – Petroleum used 0 gallons
- This report requires matching Leaf and charging data

EV Project – Nissan Leaf Usage – cont'd

ENERGY Energy Efficiency & VEHICLE TECHNOLOGES PROGRAM

EV Project Overview Report

Project to Date through March 2011

Charging Infrastructure	Number of EV Project	Number of	Electricity
Region*	Charging Units Installed To Date	Charging Events Performed	(AC MWh)
Phoenix, AZ Motropolitan Area	12	143	0.74
Tucson, AZ Metropolitan Area	2	40	0.28
Los Angeles, CA Metropolitan Area	15	249	1.01
San Diego, CA Metropolitan Area	32	483	3.23
San Francisco, CA Metropolitan Ama	12	85	0.55
Washington, D.C. Metropolitan Area	0	0	0.00
Oregon	11	210	1.28
Chattanooga, TN Metropolitan Area	0	0	0.00
Knowile, TN Metropolitan Ama	1		
Memphis, TN Metropolitan Area	0	0	0.00
Nashville, TN Metropolitan Area	4	- 44	0.36
Dallas/Ft. Worth, TX Metropolitan Area	٥	0	0.00
Houston, TX Metropolitan Area	0	0	0.00
Washington State	18	322	2.02
Total	t07	1,582	10.13

Vehicles	EV Project	EV Project Chevrolet Volts	220000	-20,000
Region'	Nissan Leafs Enrolled to Date ⁴	Enrolled to Date	Number of Trips.	Distance Driven (mi)
Phoenix, AZ Metropolitan Area	6	-	929	5,689
Tuoson, AZ Metropolitan Area	0	-	0	0
Los Angeles, CA Metropolitan Area	8	0	656	6,018
San Diego, CA Metropolitan Area	15	0	2,095	15,349
San Francisco, CA Metropolitan Area	5	-	246	2,702
Washington, D.C. Metropolitan Area	-	0	0	0
Oregon	4	-	662	3,368
Chattanooga, TN Metropolitan Area	0	-	0	0
Knoxville, TN Metropolitan Area	0		0	0
Memphis, TN Metropolitan Area	0		0	0
Nashville, TN Metropolitan Area	2		238	1,813
Dallas/Ft. Worth, TX Metropolitan Area		0	0	0
Houston, TX Metropolitan Area		0	0	0
Washington State	11	343	1,517	9,528
Total	51	0	6,343	44,467

Note: EV Project charging units may be used by vehicles that are not part of the EV Project. Likewise, EV Project vehicles may connect to non-EV Project charging units. Therefore vehicle and charging infrustructure usage shown on this report are not directly comparable.

Regions: Oregon region includes the Greater Corvalits, Eugene, Portland, and Salem Metropolitan Areas Washington region includes the Greater Seattle and Otympia Metropolitan Areas

Vehicle enrolment numbers refer to the EV Project only. Numbers do not reflect total regional or national vehicles sales or production.

* Enrollment of EV Project Chevrolet Volta is expected to begin in the second quarter of 2011.

5/19/2011 4:57:25 PM INL/MIS-11-21898

Project

Charging Unit Installation to Date by Region

Vehicle Enrollment to Date By Region

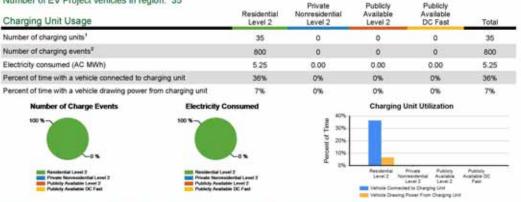
Leaf Int Volt

25

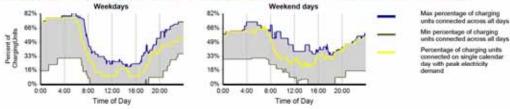
EV Project – Overview Report

- Vehicles and charging infrastructure deployed
- Charging infrastructure
 - # units installed
 - # charging events
 - AC MWh consumed
- Vehicles
 - # enrolled
 - # trips
 - Distance driven
- Results provided by EV Project region

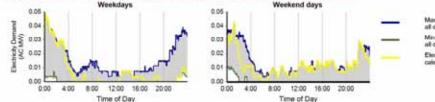
ENERGY Energy Efficiency & Renewable Energy


VEHICLE TECHNOLOGIES PROGRAM

EV Project Electric Vehicle Charging Infrastructure Summary Report


Region: All

Report period: January 2011 through March 2011


Number of EV Project vehicles in region: 35

Charging Availability: Range of Percent of Charging Units with a Vehicle Connected versus Time of Daya

Charging Demand: Range of Aggregate Electricity Demand versus Time of Day⁴

Max electricity demand across at days Min electricity demand across at days Electricity demand on single calendar day with highest peak

Project

* Includes all charging units that were in use by the end of the reporting period

² A charging event is defined as the period when a vehicle is connected to a charging unit, during which period some power is transferred

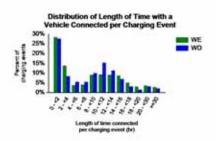
³ Considers the connection status of all charging units every minute

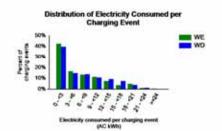
⁴ Based on 15 minute rolling average power output from all charging units

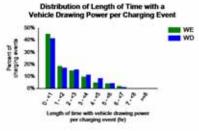
5/19/2011 5:37:48 PM INL/LTD-11-22097 1 of 2

EV Project – EV Charging Infrastructure Summary Report

- Charging unit usage
- Percent charging units with a vehicle connected by time of day
- Range of aggregate electricity demand versus time of day




Residential Level 2 Electric Vehicle Supply Equipment (EVSE)


EVSE Usage	Weekday	Weekend	Overall
Number of charging events	593	207	800
Electricity consumed (AC MWh)	4.01	1.24	5.25
Percent of time with a vehicle connected to EVSE	36%	38%	36%
Percent of time with a vehicle drawing power from EVSE	7%	7%	7%
Average number of charging events started per EVSE per day	0.9	0.8	0.9
Average number of distinct vehicles charged per EVSE per day (EV Project vehicles only)	1.0	1.0	1.0

Vehicles Charged	Nissan Leaf	Chevrolet Volt	Non-E	V Project vehicles
Percent of charging events	100%	0%		0%
Percent of electricity consumed	100%	0%		0%
Individual Charging Event Statistics		Weekday (WD)	Weekend (WE)	Overall
Individual Charging Event Statistics Average length of time with vehicle connected per	sharging event (hr)			Oversil 10.2

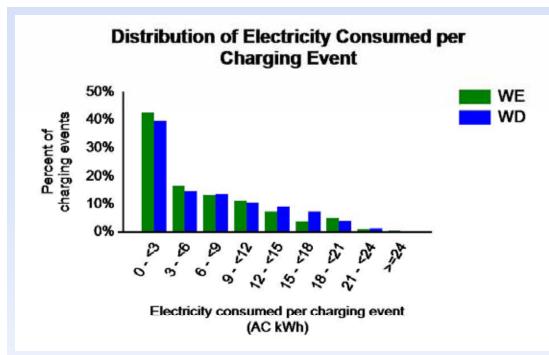
Average electricity consumed per charging event (AC kWh)

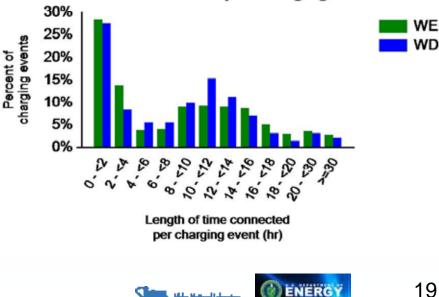
6.8

6.0

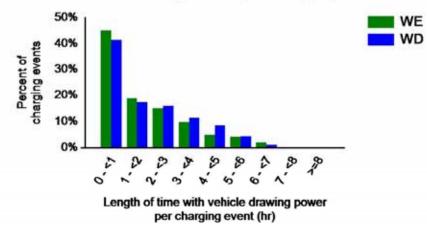
6.6

EV Project – EV Charging Infrastructure Summary Report – cont'd


- Detailed charging event breakdowns
- Graphs on next page
- Data shown for residential Level 2 EVSE



5/19/2011 5:37:48 PM INL/LTD-11-22097 2 of 2



EV Project – EV Charging Infrastructure Summary Report – cont'd

Distribution of Length of Time with a Vehicle Connected per Charging Event

Distribution of Length of Time with a Vehicle Drawing Power per Charging Event

19

EV Project – Number of Units

1 st Quarter 2011 Report Leaf and EVSE Units with	Data
Number of Leafs	50
Number of Blink EVSE	<u>107</u>
Total number of units providing data	157
June 27, 2011 Leaf and EVSE Units with Data	
Number of Leafs	1,010
Number of Blink EVSE (2 commercial)	<u>1,023</u>
Total number of units providing data	2,033

1,398 Leaf VINs & 1,966 Blink ID's (7 commercial) received to date (3,364 total)

ENERGY Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES PROGRAM

Ford Escape Advanced Research Fleet

Number of vehicles:	21	Date rang
Reporting period:	Nov 09 - Apr 11	Number of

Date range of data received: 11/01/2009 to 04/30/2011 Number of vehicle days driven: 5,425

40

20

300.000

250.000

200.000

100.000

50,000

E 150,000

Gasoline Fuel Economy By Trip Type

Distance Traveled By Trip Type

CD/CS

CS

CS CD/CS

- CD

All Trips Combined

Overall gasoline fuel economy (mpg)	38
Overall AC electrical energy consumption (AC Wh/mi) ¹	101
Overall DC electrical energy consumption (DC Wh/mi) ²	66
Total number of trips	23,548
Total distance traveled (mi)	299,960

Trips in Charge Depleting (CD) mode³

5
170
13,205
84% 169
75,997
259

Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes⁵

Gasoline fuel economy (mpg)	37
DC electrical energy consumption (DC Wh/mi) ⁶	55
Number of trips	4,506
Percent of trips city highway	38% 62%
Distance traveled (mi)	131,484
Percent of total distance traveled	44%

Trips in Charge Sustaining (CS) mode7

Gasoline fuel economy (mpg)	32
Number of trips	5,831
Percent of trips city highway	65% 35%
Distance traveled (mi)	92,478
Percent of total distance traveled	31%

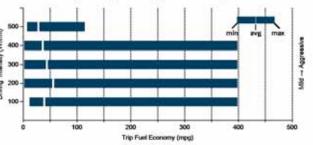
Notes: 1 - 7. Please see http://avt.inl.gov/pdf/phewfordreportnotes.pdf for an explanation of all PHEV Fleet Testing Report notes.

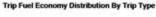
Since these vehicles are flex-fuel capable, some driving events are conducted with E-85, which may decrease fuel economy results

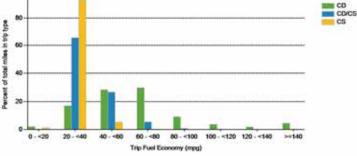
"The Ford Escape Advanced Research Fleet was designed as a demonstration of customer duty cycles related to plug-in electric vehicles. The vehicles used in this demonstration have not been optimized to provide the maximum potential fuel economy."

Ford Escape PHEV 3-Page Report

- 21 Ford Escape PHEVs
- 300,000 test miles and 24,000 trips
- All trips, 38 mpg, 101 AC Wh/mi & 66 DC Wh/mi
- Charge Depleting (CD), 52 mpg & 170 DC Wh/mi
- Charge Sustaining (CS), 32 mpg
- Plugging in = 63% increase in overall MPG when comparing CD to CS trips
- 56% of miles in CD trips
- 25% of miles in CS trips


5/9/2011 1:31:25 PM 1 of 3





VEHICLE TECHNOLOGIES PROGRAM

Trips in Charge Depleting (CD) mode	City	lighway	
Gasoline fuel economy (mpg)	48	57	
DC electrical energy consumption (DC Wh/mi)	171	169	
Percent of miles with internal combustion engine off	37%	13%	
Average trip driving intensity (Wh/Imi)	265	305	
Average trip distance (mi)	3	17	
Trips in Charge Depleting and Charge Sustaining (CD/CS) mod	le		
Gasoline fuel economy (mpg)	43	38	
DC electrical energy consumption (DC Wh/mi)	79	52	
Percent of miles with internal combustion engine off	30%	5%	
Average trip driving intensity (Wh/mi)	277	325	
Average trip distance (mi)	9	41	
Trips in Charge Sustaining (CS) mode			
Gasoline fuel economy (mpg)	30	32	
Percent of miles with internal combustion engine off	23%	4%	
Average trip driving intensity (Wh/ini)	266	321	
Average trip distance (mi)	4	38	

Ford Escape PHEV **3-Page Report**

- **Highway and city cycle** impacts
- CD city, 48 mpg, 171 DC Wh/mi
- CD highway, 57 mpg, 169 DC Wh/mi
- CS city, 30 mpg
- CS highway, 32 mpg
- Plugging in = 60% increase in city MPG and 78% increase in highway MPG (compare CD to CS)
- During CD trips, 50% of miles with engine off
- During CS trips, 27% of miles with engine off

ł

18

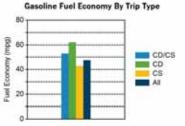
5/9/2011 1:31:25 PM 2 of 3

22

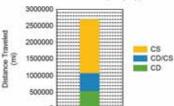
ENERGY Energy Efficiency & Renewable Energy

North American PHEV Demonstration

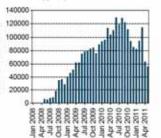
Fleet Summary Repo	ort: Hymotion Prius (V2Green data logger)
Number of vehicles:	184
Reporting Period:	Apr 08 - May 11


Vehicle Technologies Program

Date range of data received: 4/18/2008 to 5/31/2011 Number of days the vehicles were driven: 1132


Reporting Period: Api

All Trips Combined


Overall gasoline fuel economy (mpg)	-47
Overall AC electrical energy consumption (AC Wh/mi) 1	53
Overall DC electrical energy consumption (DC Wh/mi) ²	38
Total number of trips	287,310
Total distance traveled (mi)	2,691,319
Trips in Charge Depleting (CD) mode	
Gasoline fuel economy (mpg)	62
DC electrical energy consumption (DC Wh/mi) 4	142
Number of trips	116,236
Percent of trips city / highway	87% / 13%
Distance traveled (mi)	534,289
Percent of total distance traveled	20%
Trips in both Charge Depleting and Charge Sustaining (CD/CS)	modes ⁵
Gasoline fuel economy (mpg)	53
DC electrical energy consumption (DC Wh/mi) #	49
Number of trips	20,745
Percent of trips city / highway	47% / 53%
Distance traveled (mi)	541,395
Percent of total distance traveled	20%
Trips in Charge Sustaining (CS) mode 7	
Gasoline fuel economy (mpg)	43
Number of trips	150,320
Percent of trips city / highway	77% / 23%
Distance traveled (mi)	1,619,064
Percent of total distance traveled	60%

Distance Traveled By Trip Type

Miles Logged by Month This Year

Notes: 1 - 9. Please see http://avt.ini.gov/pdf/phev/ReportNotes.pdf for an explanation of all PHEV Fleet Testing Report notes.

12479

274 084

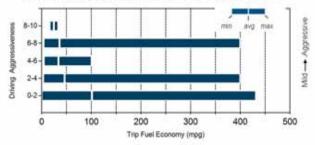
1

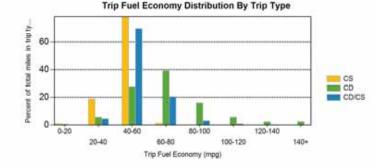
Hymotion Prius PHEV Conversion

- CD 62 mpg and 142 DC Wh/mi
- CS 43 mpg
- Plugging in = 44% increase in overall MPG when comparing CD to CS trips
- Only 20% miles in CD trips
- 60% miles in CS trips

Number of trips when the plug-in battery pack

was turned off by the vehicle operator ^{II} Distance traveled with plug-in battery pack


turned off by the vehicle operator (mi)1


Trips in Charge Depleting (CD) mode	City	Highway	
Gasoline fuel economy (mpg)	60	66	
DC electrical energy consumption (DC Wh/mi)	165	109	
Percent of miles with internal combustion engine off	32%	15%	
Average trip aggressiveness (on scale 0 - 10)	1.8	1.8	
Average trip distance (mi)	3.0	15.1	
Trips in both Charge Depleting and Charge Sustaining (CD/CS) modes			
Gasoline fuel economy (mpg)	53	53	
DC electrical energy consumption (DC Wh/mi)	79	44	
Percent of miles with internal combustion engine off	26%	9%	
Average trip aggressiveness (on scale 0 - 10)	1.9	1.6	
Average trip distance (mi)	8.7	41.5	
Trips in Charge Sustaining (CS) mode			
Gasoline fuel economy (mpg)	36	45	
Percent of miles with internal combustion engine off	22%	8%	
Average trip aggressiveness (on scale 0 - 10)	2.0	1.7	
Average trip distance (mi)	3.5	35.3	

Effect Of Driving Aggressiveness on Fuel Economy This Year

Aggressiveness factor is based on accelerator pedal position. The more time spent during a trip at higher accelerator pedal position, the higher the trip aggressiveness.

2

Hymotion Prius PHEV Conversion

- CD city, 60 mpg, 165 DC Wh/mi
- CD highway, 66 mpg, 109 DC Wh/mi
- CS city, 36 mpg
- CS highway, 46 mpg
- Plugging in = 67% increase in city MPG and 44% increase in highway MPG when comparing CD to CS trips
- CD trips 37% miles with engine off
- CS trips 30% miles with engine off

6/13/2011 1/43/39 PM

Other INL Data Collection Projects

- 140 Ram PHEV pickups same report format as Ford Escape PHEVs (August reporting)
- 20 Lithium PHEV Escape Quantum conversions (SCAQMD) – same format as above (August reporting)
- 150 Chevy Volts data collection (July reporting)
- Federal fleet vehicle use profiles (~600 vehicles with data loggers and DOD Micro Climate studies)
- Development of vehicle-based battery test-bed mule for testing emerging battery technologies
- Developing wireless charging demo and testing program
- Five USPS electric long life vehicles (ELLV) conversions track, dynamometer, and fleet testing (with data loggers)

Other INL Data Collection Projects – cont'd

- Nissan Leaf fast charge study
 - Comparison of Fast versus Level 2 charging impacts on battery life in fleets and laboratory
- Coulomb EVSE data collection will be same parameters as the EV Project, but no vehicle data will be collected. Coulomb reports 525 EVSE installed to date
- Developing other EVSE data collection activities that also support Clean Cities funded demonstrations with:
 - Aerovironment
 - Eaton
 - Shorepower

Lessons Learned

- Electric drive vehicles can provide significant vehiclebased petroleum-use reductions
 - BEVs = 100% vehicle-based petroleum reduction
 - PHEVs demonstrated mpg improvements up to 78% in some operating cycles when comparing CD to CS trips
- PHEV mpg improvements are highly dependant on
 - Missions (type [city vs. highway] and distance)
 - Operators charging or not charging the PHEVs (Duh!)
 - Ambient conditions
 - 178% increase in Hymotion Prius CD mpg at 20-30°C ambient conditions compared to <-20°C (engine off 26% of time versus engine never off)
 - 35% improvement in Ford Escape PHEV CD mpg during May 2011 versus December 2010 operations (temperature extremes not nearly as high as Hymotion Prius)

Lessons Learned – cont'd

- Th!nk cities demonstration project
 - 76% of private households driving Ford Th!nk cities had two to five, or more other household vehicles
 - 86% of households driving cities had household income greater than \$100,000 (2004 dollars)
 - Most Th!nks were charged only using public infrastructure "free electricity" at train stations during weekday commutes (presenter memory)
- Ongoing INL/DOE data collection activities will provide 100 million miles of vehicle operations and charger use
 - Private versus public charging?
 - Level 2 versus fast charging?
 - Demonstrate different revenue models?
 - Important to wait for data results before drawing conclusions!!!

Acknowledgement

This work is supported by the U.S. Department of Energy's EERE Vehicle Technologies Program

Argonne and Oak Ridge National Laboratories provide dynamometer and other testing support

More Information http://avt.inl.gov

If interested in participating in the Federal fleet vehicle mission profile study, please contact: mindy.kirkpatrick@inl.gov

INL/MIS-11-22496

