Idaho National Laboratory

Plug-In Electric Vehicles

Introduction and Real-World Data from DOE's Advanced Vehicle Testing Activity

January 2012

Jim Francfort and Matt Shirk

Outline

- Comparison of Vehicle Technology
- AVTA Data Collection and Reporting
- EV Project
- GM Volt Vehicle Demo
- Ford Escape PHEV Advanced Research Vehicle
- Chrysler RAM PHEV Vehicle Demo
- Summary

Conventional vehicle with internal combustion engine (ICE) only

Hybrid Electric Vehicle (HEV) with ICE and electric drive

Does not plug in to electric grid

Plug-in Hybrid Electric Vehicle (PHEV) with ICE and electric drive

Battery Electric Vehicle (BEV) with electric drive only

Conceptual Comparison of Vehicle Operation

Hypothetical 15 mile drive cycle

Conceptual Comparison of Vehicle Operation

Timeline of Advanced Electric Vehicle Availability

 $2004 \qquad 2006 \qquad 2008 \qquad 2010 \qquad 2012 \qquad 2014$

AVTA Participants and Goals

- Participants
 - The Advanced Vehicle Testing Activity (AVTA) is part of DOE's Vehicle Technologies Program (EERE)
 - The Idaho National Laboratory (INL) conducts the light-duty vehicle portion of the AVTA per DOE guidance
 - Many of these testing activities are conducted with ECOtality North American
 - Support also provided to DOE Clean Cities and FEMP
- The AVTA goal Petroleum reduction and energy security
 - Provide benchmark data to technology modelers, research and development programs, vehicle manufacturers (via VSATT), and target and goal setters
 - Assist fleet managers in making informed vehicle and infrastructure purchase, deployment and operating decisions

Vehicle / Infrastructure Testing Experience

- 24 million test miles accumulated on 5,500 electric drive vehicles representing 111 models
- Plug-in hybrid electric vehicles: 14 models, 430 PHEVs, 4 million test miles
- Extended Range Electric Vehicles: 1 model, 125 EREVs, 250,000 test miles
- Hybrid electric vehicles: 19 models, 50 HEVs, 6 million test miles
- Micro hybrid (stop/start) vehicles: 3 models, 7 MHVs, 300,000 test miles
- Neighborhood electric vehicles: 24 models, 372 NEVs, 200,000 test miles
- Battery electric vehicles: 47 models, 4,000 BEVs, 12 million test miles
- Urban electric vehicles: 3 models, 460 UEVs, 1 million test miles
- 4,000 EVSE and first hydrogen generation/dispensing station in United States

INL Vehicle Data Management Process

Example: Vehicle/Infrastructure Data Sources

	HEV: 12 vehicle models, 1 data logger			
Vehicle	HICE: 1 vehicle model, 1 data logger			
time-history data (second-by-	Conversion PHEVs: 8 vehicle models, 3 data loggers			
second)	Ford Escape PHEV, Ford wireless logger			
	Chrysler Ram PHEV, Chrysler wireless logger			
Vehicle event data	Nissan Leaf, Nissan telematics			
(key-on, key-off)	Chevrolet Volt, OnStar telematics			
Charger event and	ECOtality Blink networked level 2 EVSE, DC/fast chargers			
15 min time-history data	Coulomb ChargePoint networked level 2 EVSE			

Managing 26 different data models

INL Data Management System - Push (Nissan, GM, Chrysler, Coulomb)

Vehicle **Protected Data** and Charger Access restricted Data by firewall rules **EV** Project Team vvvv**EV** Project FTPS/SFTP Server **OEM Data** OEM Manage-INL pulls with pushes Internal data Fleet summary ment encrypted transmission using quality reports reports - public **Systems** FTPS/ SFTP Reports posted on WWW INL transmits reports to DOE And OEMs AVT.INL.GOV INL Protect Enclave - EV Project member access only INL Internal firewall INL DMZ Firewall – Public has access to AVT.INL.GOV

INL Data Management System - Pull (ECOtality, Ford, conversion PHEVs, HEVs, HICEs)

Vehicle and Charger Data

OEM Data Management Systems

Data Security and Protection

- All raw vehicle and EVSE data, and personal information protected by NDAs (Non Disclosure Agreements) or a CRADAs (Cooperative Research And Development Agreements), resulting in:
 - Limitations on how the proprietary data can be distributed, stored, and used
 - No raw data can or will be distributed by INL
 - Raw data, in both electronic and printed formats, cannot be shared with DOE in order to avoid exposure to FOIA
- Vehicle and EVSE data collection would not occur unless the above limitations are strictly adhered by INL

EV Project Locations (Largest World-Wide PEV and EVSE Data Collection Activity)

The EV Project at a glance:

EV Project Residential Infrastructure

- Deploy 8,300 battery electric vehicles with data loggers
 - 5,700 Nissan Leaf BEVs
 - 2,600 Chevrolet Volt EREVs
- Install 8,300 level 2 residential EVSE with data loggers

EV Project Commercial Infrastructure

- Install ~5,000 level 2 EVSE with data loggers
 - Retail locations
 - Municipal locations
 - Employer locations
- Deploy 200+ Dual Port DC Fast Chargers with data loggers

EV Project EVSE and Fast Charger Data Parameters Collected per Charge Event

- Date/Time Stamp
- Unique ID for Charging Event
- Unique ID Identifying the EVSE may not change
- Connect and Disconnect Times
- Start and End Charge Times
- Maximum Instantaneous Peak Power
- Average Power
- Total energy (kWh) per charging event
- Rolling 15 Minute Average Peak Power
- And other non-dynamic EVSE information (GPS, ID, type, contact info, etc.)

EV Project Vehicle Data Parameters Collected per each Key-on Key-off Event

- Date/Time Stamp
- Vehicle ID
- Event type (key on / key off)
- Odometer
- Battery state of charge
- GPS (longitude and latitude)

EV Project Number EVSE & Vehicles

2,822 Leafs and Volts, and 2,990 EVSE Reporting data 3rd Qtr 2011

•	Vehicle	Usage -	- 3 st qu	arter 2011
---	---------	---------	----------------------	-------------------

 Number of Trips 	536,548
 Total distance traveled (miles) 	3,718,272 mi
 Ave trip distance 	6.9 mi
 Ave distance per day when driven 	30.8 mi
 Ave # trips between charging events 	4.3
- Ave distance traveled between charging events	30.1 mi
 Ave # charging events per day when a vehicle 	
was driven	1.0
 Vehicle petroleum used 	0 gallons

EV Project – Residential EVSE

- Power demand range for any time during reporting quarter
- Yellow line is daily profile for the day with quarterly peak demand
- Both graphs in AC MW
- Based on 15 minute rolling average MW demand
- National data. All 2,413
 Residential Level 2 EVSE.
 July-Sept 2011

EV Project – Residential EVSE

- Percentage of charging units with a vehicle connected
- Yellow line is for day with peak power demand
- Both graphs percent of charging units
- Based on 15 minute increments
- National data. All 2,413
 Residential Level 2 EVSE.
 July-Sept 2011

EV Project – Public EVSE

- Power demand range for any time during reporting quarter
- Yellow line is daily profile for the day with quarterly peak demand
- Both graphs in AC MW
- Based on 15 minute rolling average MW demand
- National data. All 170
 Public Level 2 EVSE. July-Sept 2011

Weekday 33% 26% ChargingUnits Percent of 20% 13% 7% 0% 4:00 0:00 12:00 16:00 20:00 8:00 Time of Day

EV Project – Public EVSE

- Percentage of charging units with a vehicle connected
- Yellow line is for day with peak power demand
- Both graphs percent of charging units
- National data. All 170
 Public Level 2 EVSE. July-Sept 2011

EV Project - EVSE Infra. Summary Report

•	National	Data -	3 rd	quarter	2011
---	-----------------	--------	-----------------	---------	------

 Ave time vehicle connected R2 WD 	9.9 hours
 Ave time vehicle connected R2 WE 	10.0 hours
 Ave time vehicle drawing power R2 WD 	2.0 hours
 Ave time vehicle drawing power R2 WE 	1.8 hours
 Ave energy per charge event R2 WD 	7.5 AC kWh
 Ave energy per charge event R2 WE 	6.5 AC kWh

 Ave time vehicle connected P2 All 	6.8 hours
 Ave time vehicle drawing power P2 All 	1.7 hours
 Ave energy per charge event P2 All 	6.3 AC kWh

 R: residential, P: public, WD: weekday, WE: weekend, All: weekday/end combined

EV Project – EVSE Infra. Summary Report

EV Project – EVSE Infra. Summary Report

EV Project – EVSE Infra. Summary Report

Chevrolet Volt DOE ARRA Project

- 110 Volts 3rd quarter report 208,165 test miles
- All trips, 74.8 mpg, 185 AC Wh/mi
- EV mode, 369 AC Wh/mi no gasoline, 50.3% all miles
- Extended range mode, 37.2 mpg
- Average trip distance 7.4 miles city and 45.6 miles highway driving

 Average charging events per month 	17
 Average # charging events per vehicle day 	1.3
 Average miles per charging event 	44 miles
 Average trips between charging events 	3.3
 Average time connected per event 	3.4 hours
 Average energy per charge event 	7.1 AC kWh
 Average charging energy per vehicle month 	119 AC kWh

Chevrolet Volt DOE ARRA Project

Ford Escape Advanced Research Vehicle

- 21 Ford Escape PHEVs (November 2009 2011)
- 395,000 test miles and 31,000 trips
- All trips, 38 mpg, 101 AC Wh/mi & 66 DC Wh/mi
- Charge Depleting (CD), 53 mpg & 165 DC Wh/mi
- Charge Sustaining (CS), 32 mpg
- Plugging in = 66% increase in overall MPG when comparing CD to CS trips
- CD city, 49 mpg, 166 DC Wh/mi
- CD highway, 58 mpg, 164 DC Wh/mi
- CS city, 30 mpg
- CS highway, 32 mpg
- Plugging in = 63% increase in city MPG and 81% increase in highway MPG (compare CD to CS)
- City 38% CD and 23% CS miles engine off
- Highway 12% CD and 4% CS miles engine off

Ford Escape Advanced Research Vehicle

- 18.9 miles per charge event
- 1.5 trips per charge event
- 3.0 charge events per vehicle day
- 6.1 average hours plugged in per charge
- 1.4 average hours drawing power per charge event
- 1.9 kWh average energy per charge event
- 44 average charge events / vehicle / month when driven

VEHICLE TECHNOLOGIES PROGRAM

Chrysler RAM PHEV Fleet

Number of vehicles: 37 Date range of data received: 7/1/2011 to 8/31/2011

Reporting period: July 11 - Aug 11 Number of vehicle days driven:

All Trips Combined

Overall gasoline fuel economy (mpg)	16
Overall AC electrical energy consumption (AC Wh/mi) ¹	162
Overall DC electrical energy consumption (DC Wh/mi) 2	94
Overall DC electrical energy captured from regenerative braking (DC Wh/mi)	53
Total number of trips	3,443
Total distance traveled (mi)	13,911

Trips in Charge Depleting (CD) mode3

Gasoline fuel economy (mpg)	20
DC electrical energy consumption (DC Wh/mi) ⁴	282
Number of trips	1,310
Percent of trips city highway	98% 2%
Distance traveled (mi)	3,779
Percent of total distance traveled	27%

Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes⁵

					0 (,		
Gasoline fuel econo	omy (mpg)						20
DC electrical energ	y consum	ption (DC Wh/m	i) ⁶				121
Number of trips								175
Percent of trips city	highway					86%	1	14%
Distance traveled 0	D CS (m	ni)				1,232	1	1,433
Percent of total dist	ance trave	eled C	D CS			9%	1	10%

Trips in Charge Sustaining (CS) mode ⁷	
Gasoline fuel economy (mpg)	13
Number of trips	1,958
Percent of trips city highway	98% 2%
Distance traveled (mi)	7,505
Percent of total distance traveled	53%

Percent of Drive Time by Operating Mode

The Chrysler RAM PHEV Fleet was designed as a demonstration program of customer duty cycles related to plug-in electric vehicles and may not necessarily demonstrate optimized

Vehicle fuel economy is based on customer usage and may not be representative of maximum potential fuel economy

9/19/2011 10:22:01 AM INL/MIS-11-22875

Chrysler Ram PHEV **Project**

- 70 Chrysler Ram PHEVs
- 70,000 test miles and 11,000 trips
- All trips, 18 mpg, 115 AC Wh/mi & 69 DC Wh/mi
- CD, 23 mpg & 248 DC Wh/mi
- **CS**, 17 mpg
- Plugging in = 35% increase in overall MPG when comparing CD to CS trips

Chrysler Ram PHEV Pickups

- 44% of Ram driving and stopped time, gas engine is stopped
- 54.4 miles per charge event
- 8.5 trips per charge event
- 0.64 charge events per vehicle day
- 1.9 average hours per charge event
- 6.3 kWh average energy / charge
- 240 L1 and 1,029 L2 charge events
- 14% at L1 & 86% at L2 total energy
- 29.8 hrs at L1 & 2.3 hrs at L2 to charge from 20% to 100% SOC

Summary - Based on Early Data

- Leafs: 31 miles per day, 30 miles per charge, 1 charge per vehicle day, 4.3 trips per charge, and 7.5 kWh per charge
- Most EV Project residential Level 2 charging occurs off-peak
- EV Project vehicles connected 5X's longer than needed to recharge - opportunities to shift charging times
- San Diego: significant charge-starts occur at the midnight start of super off-peak kWh rates
- EV Project accumulating ½ million test miles per week
- Today's grid-connected electric drive technologies result in 35% to 100% reductions in petroleum use

Acknowledgement

This work is supported by the U.S. Department of Energy's EERE Vehicle Technologies Program

More Information

http://avt.inl.gov