U.S. Department of Energy’s Vehicle Technologies Program

Plug-in 2012 – Light Duty PEV Testing by DOE’s Advanced Vehicle Testing Activity

Jim Francfort – Idaho National Laboratory

Plug-in 2012
San Antonio, Texas
July 25, 2012

This presentation does not contain any proprietary or sensitive information
Outline

• Participants
• Goals
• Testing experience
• Data processes and data security
• EV Project
 – Description and data parameters
 – Project status
 – Leaf, Volt, and EVSE benchmarking results
• Other electric drive vehicle research activities
• Summary
• Future work
Idaho National Laboratory (INL)

- Eastern Idaho based U.S. Department of Energy (DOE) Federal research laboratory
- 890 square mile site with 4,000 staff
- INL supports DOE’s strategic goal
 - Increase U.S. energy security and reduce the nation’s dependence on foreign oil

- Multi-program DOE laboratory
 - Nuclear Energy
 - Energy Critical Infrastructure Protection
 - Homeland Security and Cyber Security
 - Advanced Vehicles and Battery Development
 - Fossil, Biomass, Wind, Geothermal and Hydropower Energy
AVTA Participants

- INL manages the Advanced Vehicle Testing Activity’s (AVTA) field testing of advanced technology light-duty vehicles for DOE’s Vehicle Technologies Program
- ECOtality provides testing support via a competitively bid NETL (National Energy Testing Laboratory) contract
- Test partners include electric utilities, Federal, state and local government agencies, private companies, and individual vehicle owners
- AVTA testing supports DOE’s international petroleum reduction objectives with other countries
 - Canada
 - China
 - European Union
AVTA Goals

• The AVTA goals
 – Petroleum reduction and energy security
 – Benchmark technologies that are developed via DOE research investments
• Confusing people with facts via structured benchmark testing
 – Provide benchmark data to DOE, National Laboratories (ANL, NREL, ORNL, PNNL), Federal Agencies (DOD, DOI, DOT, EPA, USPS), technology modelers, R&D programs, vehicle manufacturers (via USCAR’s VSATT, EESTT, GITT), and target and goal setters
 – Assist fleet managers, via Clean Cities, FEMP and industry gatherings, in making informed vehicle and infrastructure deployment and operating decisions
Vehicle / Infrastructure Testing Experience

- 48 million test miles accumulated on 8,200 electric drive vehicles representing 114 models
- EV Project: 4,700 Leafs and Volts, 6,300 EVSE (electric vehicle supply equipment), 30 million test miles
- PHEVs: 14 models, 430 PHEVs, 4 million test miles
- EREV: 1 model, 150 EREV, 900,000 test miles
- HEVs: 21 models, 52 HEVs, 6.2 million test miles
- Micro hybrid (stop/start) vehicles: 3 models, 7 MHVs, 485,000 test miles
- NEVs: 24 models, 372 NEVs, 200,000 test miles
- BEVs: 47 models, 2,000 BEVs, 5 million test miles
- UEVs: 3 models, 460 UEVs, 1 million test miles
- Other testing includes hydrogen ICE vehicle and infrastructure testing
INL Vehicle/EVSE Data Management Process

Process Driven by Disclosure Agreements

- HICEVs
- HEVs
- PHEVs
- BEVs & EREVs
- EVSE & Chargers

INL Vehicle Data Management System

- File server
- SQL Server data warehouse
- Report generator

- Data quality reports
- Individual vehicle reports
- Fleet summary reports - Public
- Focused technical analyses and custom reports
- Modeling and simulation input
Data Collection, Security and Protection

• The AVTA has used data loggers on vehicles and EVSE (electric vehicle supply equipment) since 1993 to benchmark vehicle and charging equipment profiles

• All vehicle, EVSE, and personal raw data is legally protected by NDAs (Non Disclosure Agreements) or CRADAs (Cooperative Research and Development Agreements)
 – Limitations on how proprietary data can be distributed, stored, and used
 – No raw data can or will be distributed by INL
 – Raw data, in both electronic and printed formats, is not shared with DOE in order to avoid exposure to FOIA

• Vehicle and EVSE data collection would not occur unless NDAs and CRADAs are strictly adhered by INL
EV Project Locations and Goal

- ECOtality is the EV Project lead, with INL, Nissan and GM/OnStar as the most significant partners.
- 18 current locations with more being added.
- Goal: Build and study mature charging infrastructures and take the lessons learned to support the future streamlined deployment of grid-connected electric drive vehicles.
- EV Project reporting requires INL to blend three distinct data streams based on GPS and time/date stamps, and provide independent reports to DOE, ECOtality, project participants, industry, and the general public.
EV Project – EVSE Data Parameters Collected per Charge Event

- Data from ECOtality’s Blink EVSE network
- Unique ID for Charging Event
- Unique ID Identifying the EVSE
- Date/Time Stamp
- Connect and Disconnect Times
- Start and End Charge Times
- Maximum Instantaneous Peak Power
- Average Power
- Total energy (kWh) per charging event
- Rolling 15 Minute Average Peak Power
- And other non-dynamic EVSE information (GPS, ID, type, contact info, etc.)
EV Project – Vehicle Data Parameters Collected per Start/Stop Event

- Data is received via telematics providers from Chevrolet Volts and Nissan Leafs
- Vehicle ID
- Event type (key on / key off)
- Odometer
- Battery state of charge
- Date/Time Stamp
- GPS (longitude and latitude)
- Recorded for each key-on and key-off event
EV Project – Vehicle Deployments / Miles

- 4,278 Leafs (6/24) and 428 Volts (4/01) reporting data
- 4,706 vehicles and growing
- 30.3 million total miles
- 105,000 test miles per day
EV Project – EVSE Deployment and Use

- 6,257 total EVSE
- 4,634 Res. EVSE
- 1,623 non-Res EVSE
- 865,000 charge events
- 3,500 charge events per day
- Non-Residential includes DCFC
- Above as of 6/24/12
- Data is continuously back-filled
7,300 MWh total electricity charged
6,888 MWh residential
401 MWh non-residential
26 MWh used for charging per day

Vehicle efficiency cannot be accurately calculated using total vehicle miles and total energy
Non-EV Project vehicles sometimes charge at EV Project EVSE
EV Project vehicles may charge at 110V or other 240V non-EV Project EVSE
EV Project – Overview Report 1st Quarter

• Vehicles and charging infrastructure deployed to date 1st quarter 2012 and data received by INL
• Charging infrastructure
 – 5,432 units installed
 – 665,968 charging events
 – 5,069 AC MWh
• Vehicles
 – 4,066 Leafs
 – 427 Volts
 – 22.6 million miles
• Regional analyses are conducted and reported each quarter
• 1st quarter 2012: 93 pages and 53,000 data values calculated for 4 reports
Vehicle Usage – 1st quarter 2012

<table>
<thead>
<tr>
<th></th>
<th>Leafs</th>
<th>Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of vehicles</td>
<td>2,987</td>
<td>317</td>
</tr>
<tr>
<td>Number of Trips</td>
<td>773,602</td>
<td>76,425</td>
</tr>
<tr>
<td>Distance (thousands)</td>
<td>5,558 mi</td>
<td>610 mi</td>
</tr>
<tr>
<td>Average (Ave) trip distance</td>
<td>7.2 mi</td>
<td>8.0 mi</td>
</tr>
<tr>
<td>Ave distance per day</td>
<td>30.2 mi</td>
<td>36.4 mi</td>
</tr>
<tr>
<td>Ave number (#) trips between charging events</td>
<td>3.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Ave distance between charging events</td>
<td>27.4 mi</td>
<td>24.1 mi</td>
</tr>
<tr>
<td>Ave # charging events per day</td>
<td>1.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note that per day data is only for days a vehicle is driven.
Battery SOC quarterly trends may indicate greater driver confidence in vehicle range and EVSE availability.

SOC is also available for Volts.
EV Project – Leaf Usage Report (1st ¼ 2012)

- Regional variations in charging behavior
- Possible rich versus non-rich public charge environment impacts

- Data is also available for Volts
EV Project – Leaf Usage Report (1st ¼ 2012)

- Some regional variations in driving and charging profiles

![Bar chart showing average miles per day and miles per charge](chart1.png)

![Bar chart showing average miles per trip and trips per charge](chart2.png)
• Seasonal variations may not be significant yet, given low number of vehicles and “early adapters” in early quarters
• Graphs document when EVSE have a vehicle connected
• National Data
• Range of Percent of Charging Units with a Vehicle Connected vs. Time of Day
• 1st quarter 2012
• 3,324 residential and 955 publicly available Level 2 EVSE
• 10 DC fast chargers
EV Project – EVSE Infra. Summary Report

- Charging demand
- National data, all EVSE
- Time of day kWh rates are influencing charging start times as measured by AC MW demand

- Range of Aggregate Electricity Demand vs. Time of Day (AC MW)
- 1st quarter 2012
- 3,324 residential and 955 publicly available Level 2 EVSE
- 10 DC fast chargers
EV Project – EVSE Infra. Summary Report

- Residential Level 2 Weekday EVSE 1st Quarter 2012
- Time of day kWh rates clearly influence charge patterns

San Diego

Weekday

Oregon

Weekday

San Francisco

Weekday

Washington State

Weekday
National Data – 1st quarter 2012

- **Ave time vehicle connected** R2 WD: 11.4 hours
- **Ave time vehicle connected** R2 WE: 11.8 hours
- **Ave time vehicle drawing power** R2 WD: 2.4 hours
- **Ave time vehicle drawing power** R2 WE: 2.0 hours
- **Ave energy per charge event** R2 WD: 8.7 AC kWh
- **Ave energy per charge event** R2 WE: 7.3 AC kWh
- **Ave time vehicle connected** P2 WD: 6.3 hours
- **Ave time vehicle connected** P2 WE: 4.1 hours
- **Ave time vehicle drawing power** P2 WD: 2.1 hours
- **Ave time vehicle drawing power** P2 WE: 1.9 hours
- **Ave energy per charge event** P2 WD: 7.3 AC kWh
- **Ave energy per charge event** P2 WE: 6.6 AC kWh

Yes, this is an ugly slide

EV Project – EVSE Infra. Summary Report

• Percent of public EVSE deployed is increasing (22%)
• However, use is increasing at a slower rate (next slide)
EV Project – EVSE Infra. Summary Report

- Percent charge events and AC MWH use by residential and public EVSE each reporting quarter
- Public EVSE use (red & blue lines) is increasing
- 9.1% charge events and 8.0% MWh 1st quarter 2012
Chevrolet Volt DOE ARRA Project

- Non-public fleet drivers operating 150 Volts
- May ‘11 to March ‘12
 - 878,000 total miles
 - All trips, 70.6 mpg, 177 AC Wh/mi
- EV mode, 362 AC Wh/mi. 48.9% miles
- Extended range mode, 36.1 mpg
- Jan to March 2012
 - 346,000 miles
 - EV mode, 384 AC Wh/mi. 46.8% miles
Chevrolet Volt DOE ARRA Project

• Non-public fleet drivers
• 150 Volts (May ‘11 – March ’12)
 – Average charging events per month 16
 – Average # charging events per vehicle day 1.2
 – Average miles per charging event 42 miles
 – Average trips between charging events 3.4
 – Average time connected per event 3.3 hours
 – Average energy per charge event 7.2 AC kWh
 – Average charging energy per vehicle month 117 AC kWh
 – Average trip distance city driving 7.2 miles
 – Average trip distance highway driving 44.1 miles
 – Percent of miles in EREV (electric) mode 48.9%
Ford Escape Adv. Research Vehicle

- 21 Ford Escape PHEVs
- Fleet drivers
- Nov 09 to June 12
- 529,000 test miles
- All trips, 38 mpg, 100 AC & 68 DC Wh/mi
- Charge Depleting (CD), 52 mpg & 163 DC Wh/mi. 29% of all miles
- Charge Sustaining (CS), 31 mpg. 28% of all miles
- Charging = 68% overall increase in mpg when comparing CD to CS trips
Ford Escape Adv. Research Vehicle

- Ambient temperature and increased engine off-times impact mpg
- Charging = 57% increase in city mpg and 78% increase in highway mpg (compare CD to CS)
- City - 36% CD and 23% CS miles engine off
- Highway - 11% CD and 4% CS miles engine off
Chrysler Ram PHEV Project

- 109 Ram PHEVs
- Fleet drivers
- July 2011 to May 2012
- 815,000 test miles
- All trips, 19 mpg, 100 AC & 69 DC Wh/mi. 44 DC Wh/mi captured by regenerative braking
- CD, 23 mpg & 210 DC Wh/mi
- CS, 17 mpg
- Charging = 35% overall increase in mpg when comparing CD to CS trips
Chrysler Ram PHEV Pickups

- Rams in fleet applications
- 39% total time gas engine is stopped
 - Vehicle driving 16% time engine stopped
 - Vehicle stopped 23% time engine stopped
- 64.1 miles per charge event
- 7.0 trips per charge event
- 0.89 charge events per vehicle day
- 2.4 average hours per charge event
- 6.4 AC kWh average energy / charge
ChargePoint America ARRA Project

- Conducted by Coulomb
- Project to March 2012
- 2,543 EVSE installed and reporting data
- 972 Residential
- 195 Private/commercial
- 1,371 Public
- 5 unknown
- 223,000 charge events
- 1,500 AC MWh
ChargePoint America ARRA Project

- Feb & March 2012 data
- 67,000 charge events
- Percent time vehicle connected
 - Residential 51%
 - Private/com 29%
 - Public 7%
- Percent time drawing power
 - Residential 16%
 - Private/com 9%
 - Public 4%
- EVSE data only
Additional PEV and Infrastructure Testing

- 20 Quantum PHEV Escape conversions
- 5 US Postal Service electric delivery vehicle conversions
- Conducting testing of “dumb” and “smart” EVSE
- Initiated wireless charging test program
- Initiated field and lab DC Fast and Level 2 charging study of impacts on battery life in 6 vehicles
- Conducting first responders training program with the National Fire Prevention Association and NHTSA
- Battery mule test vehicle provides field testing of traction battery packs at any power and efficiency level
- Several other EVSE providers have started to provide charging data to INL
EV Project Summary To Date

- EV Project vehicles connected much longer than needed to recharge - opportunities to shift charging times
- Significant residential Level 2 EV Project charging occurs off-peak with charge-starts occurring at the midnight starts of super off-peak TOU kWh rates
- Significant opportunities to fully understand how the public uses public versus non-public infrastructure
- Revenue models for public charging being introduced – impacts?
- Only about 30% of EV Project data collected to date
- “Normal” research project process requires:
 - Design and execute the project, data collection completed, data analyzed, and finally, reports issued at completion of experiment
- INL/ECOtality needs to completely collect all data before definitively reporting seasonal trends and behaviors
Future EV Project Data Analysis Subjects

- Pricing elasticity – TOU rate influences?
- Regional and seasonal demographics and charging behaviors?
- Density of residential and non-residential EVSE as input to local micro distribution studies – transformer failures?
- Charge control preferences – vehicle, Blink and web based, and scheduled versus random?
- Rich public versus non-rich EVSE charging behaviors?
- Level 2 EVSE versus DCFC behaviors?
- Travel corridor versus convenience charging at stores?
- Length of vehicle ownership and miles per day / week / charge?
- Non-residential subcategories (public and work parking)?
- Etc., etc., etc.?
Acknowledgement

This work is supported by the U.S. Department of Energy’s EERE Vehicle Technologies Program

This presenter is very grateful for DOE’s support and the contributions of all the testing partners

More Information
http://avt.inl.gov

This presentation can be found in the publications section of the above website

INL/CON-12-26634