Vehicle / Infrastructure Testing Experience

- 120 million test miles accumulated on 11,600 electric drive vehicles and 16,800+ EVSE and DCFC
- EV Project: 8,110 Leafs, Volts and Smart EVs, 12,604 EVSE and DC Fast Chargers (DCFC), 100 million test miles. 1 million miles every 6 days
- Charge Point: 4,217 EVSE reporting 997,000 charge events
- PHEVs: 15 models, 434 PHEVs, 4 million test miles
- EREVs: 2 model, 156 EREVs, 2.3 million test miles
- HEVs: 24 models, 58 HEVs, 6.4 million test miles
- Micro hybrid (stop/start) vehicles: 3 models, 7 MHVs, 608,000 test miles
- NEVs: 24 models, 372 NEVs, 200,000 test miles
- BEVs: 48 models, 2,000 BEVs, 5 million test miles
- UEVs: 3 models, 460 UEVs, 1 million test miles
- Other testing includes hydrogen ICE vehicle and infrastructure testing
INL Vehicle/EVSE Data Management Process

Process Driven by Disclosure Agreements

Data quality reports
Individual vehicle reports
Fleet summary Reports - Public
Focused technical analyses and custom reports
Modeling and simulation input

INL Vehicle Data Management System

File server
SQL Server data warehouse
Report generator

HICEVs
HEVs
PHEVs
BEVs & EREVs
EVSE & Chargers

Parameters
range check
Lame data check
Missing/empty parameter check
Conservation of energy check
SOC continuity check
Transfer completion check

Parameters
range check
Lame data check
Missing/empty parameter check
Conservation of energy check
SOC continuity check
Transfer completion check

Data quality reports

Trip Fuel Economy (mpg)

CD trips
CD/CS trips
CS trips
Log. (CD trips)
Log. (CD/CS trips)

Avg Hourly Vehicle Charging Demand

Time of Day

Mon AM - Tues AM
Tue AM - Wed AM
Wed AM - Thu AM
Thu AM - Fri AM
Fri AM - Sat AM
Sat AM - Sun AM
Sun AM - Mon AM

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Modeling and simulation input
EV Project Goal, Locations, Participants, and Reporting

- 50-50 DOE ARRA and ECOtality North America funded
- Goal: Build and study mature charging infrastructures and take the lessons learned to support the future streamlined deployment of grid-connected electric drive vehicles
- ECOtality is the EV Project lead, with INL, Nissan and OnStar/GM as the prime partners, with more than 40 other partners such as electric utilities and government groups
EVSE Data Parameters Collected per Charge Event

- Data from ECOtality’s Blink & other EVSE networks
- Connect and Disconnect Times
- Start and End Charge Times
- Maximum Instantaneous Peak Power
- Average Power
- Total energy (kWh) per charging event
- Rolling 15 Minute Average Peak Power
- Date/Time Stamp
- Unique ID for Charging Event
- Unique ID Identifying the EVSE
- And other non-dynamic EVSE information (GPS, ID, type, contact info, etc.)
Vehicle Data Parameters Collected per Start/Stop Event

- Data is received via telematics providers from Chevrolet Volts and Nissan Leafs
- Odometer
- Battery state of charge
- Date/Time Stamp
- Vehicle ID
- Event type (key on / key off)
- GPS (longitude and latitude)
- Recorded for each key-on and key-off event

Additional data is received monthly from Car2go for the Smart EVs
Data Collection, Security and Protection

• All vehicle, EVSE, and PII raw data is legally protected by NDAs (Non Disclosure Agreements) or CRADAs (Cooperative Research and Development Agreements)
 – Limitations on how proprietary and personally identifiable information can be stored and distributed
 – Raw data, in both electronic and printed formats, is not shared with DOE in order to avoid exposure to FOIA
 – Vehicle and EVSE data collection would not occur unless testing partners trust INL would strictly adhere to NDAs and CRADAs
 – Raw data cannot be legally distributed by INL
<table>
<thead>
<tr>
<th></th>
<th>Leafs</th>
<th>Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of vehicles</td>
<td>4,261</td>
<td>1,895</td>
</tr>
<tr>
<td>Number of Trips</td>
<td>1,135,000</td>
<td>676,000</td>
</tr>
<tr>
<td>Distance (million miles)</td>
<td>8.04</td>
<td>5.75</td>
</tr>
<tr>
<td>Average (Ave) trip distance</td>
<td>7.1 mi</td>
<td>8.3 mi</td>
</tr>
<tr>
<td>Ave distance per day</td>
<td>29.5 mi</td>
<td>41.0 mi</td>
</tr>
<tr>
<td>Ave number (#) trips between charging events</td>
<td>3.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Ave distance between charging events</td>
<td>26.7 mi</td>
<td>27.6 mi</td>
</tr>
<tr>
<td>Ave # charging events per day</td>
<td>1.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* Note that per day data is only for days a vehicle is driven.
EV Project – Leaf & Volt Charging

Leafs

Battery State of Charge (SOC) at the Start of Charging Events
- Home location
- Away-from-home location

Battery State of Charge (SOC) at the End of Charging Events
- Home location
- Away-from-home location

Frequency of Charging by Charging Location
- Home location: 20%
- Away-from-home location: 6%
- Unknown location: 74%

Volts

Battery State of Charge (SOC) at the Start of Charging Events
- Home location
- Away from home

Battery State of Charge (SOC) at the End of Charging Events
- Home location
- Away from home

Frequency of Charging by Charging Location and Type
- Home location: 14%
- Away from home: 7%
- Unknown charge location: 80%
Residential & Public Level 2 EVSE Use

- **Weekday EVSE 2nd Quarter 2013.** Residential and public connect time and energy use are fairly opposite profiles.

Legend: 91 day reporting period. Data is max (blue line), mean (black line) and minimum (green line), for the reporting period. Dark gray shaded is plus and minus 25% quartile. Same legend all demand and connect time graphs.
Residential Level 2 EVSE Connect Profiles

• Weekday EVSE 2nd Quarter 2013
• San Diego and San Francisco, with residential L2 TOU rates, are similar to other regional EVSE connect profiles.
Residential Level 2 EVSE Demand Profiles

• Residential Level 2 Weekday EVSE 2nd Quarter 2013
• TOU kWh rates in San Diego and San Francisco clearly impact when vehicle charging start times are set
Residential vs. Public Use Rates

- Note 5.4 to 1 weekly Residential EVSE use rate versus weekly Public Level 2 EVSE use rate (last 5 weeks)
EVSE DCFC Use

- DC Fast Chargers Weekday 2nd Quarter 2013
- 87 DCFC, 27,000 charge events and 223 AC MWh

- EV Project Leafs 25% charge events and 24% energy used
- Unknowns are Non EV Project vehicles
- 3.8 average charge events per day per DCFC
- 19.5 minutes average time connected
- 19.5 minutes average time drawing energy
- 8.3 kWh average energy consumed per charge
EV Project – DCFC Power Levels

- DC Fast Chargers Weekday 1st Quarter 2013
- 72 DCFC, 13,500 charge events and 102 AC MWh
EV Project – DCFC Connect Time

- Distribution of time vehicle connected per DCFC event for all regions. **No connect times are greater than 60 minutes**
EV Project – DCFC Energy Delivered

- Distribution of energy delivered per DCFC event for all regions. **No charge event delivered more than 18 kWh**
- Data from all DCFC, life of project
EV Project – DCFC Versus Level 2 Public

- Number of charge events per publicly accessible Level 2 EVSE versus per DCFC in the 1st Quarter 2013
- Nationally, 17 events per public L2 EVSE & 188 per DCFC
DCFC Installation Costs / Issues

- Current installations range from $8,500 to $48,000 (99 units)
- Average installation cost to date is about $21,000
- Host has obvious commitment for the parking and ground space - not included in above costs
- Above does not include any costs that electric utility may have incurred in evaluating or upgrading service

- These are the preliminary costs to date. When all 200 DC Fast Chargers are installed, installation costs may be different
 - All the best (lower-cost) sites are installed first, so final costs may be higher
 - Lessons learned may help lower future costs and site selections, so final costs may be lower
DCFC Individual Installation Costs

- Total installation costs (99 units)
- Does not include DCFC hardware

Mean - $20,848
Mode - $20,188
DCFC Installation Costs

- **Total installation costs (99 units)**
- Includes everything EV Project has funded per DCFC installation except DCFC charging unit

<table>
<thead>
<tr>
<th>Number per Region</th>
<th>National - 99</th>
<th>AZ - 17</th>
<th>WA - 12</th>
<th>CA - 37</th>
<th>OR - 15</th>
<th>TN - 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>$8,440</td>
<td>$8,440</td>
<td>$18,368</td>
<td>$10,538</td>
<td>$12,868</td>
<td>$14,419</td>
</tr>
<tr>
<td>Mean</td>
<td>$20,848</td>
<td>$15,948</td>
<td>$24,001</td>
<td>$21,449</td>
<td>$19,584</td>
<td>$23,271</td>
</tr>
<tr>
<td>Maximum</td>
<td>$47,708</td>
<td>$33,990</td>
<td>$33,246</td>
<td>$47,708</td>
<td>$26,766</td>
<td>$31,414</td>
</tr>
</tbody>
</table>
DCFC Individual Installation Costs

- Total installation costs (99 units)
- Does not include DCFC hardware
DCFC Installation Costs / Issues

- **Items of concern associated with installation that drive costs**
 - Power upgrades needed for site
 - Impact on local transformer
 - Ground surface material and cost to “put back” (e.g. concrete, asphalt, landscaping)
 - Other underground services that may affect method of trenching power to DCFC
 - Gatekeeper or decision-maker for the property is not always apparent
 - Magnitude of operating costs and revenue opportunities are still largely unknown
 - Time associated with permissions
 - Permits, load studies, and pre-, post-, and interim inspections
Demand and energy costs are significant for some utilities – $0.25/kWh – $25/kW

Some utilities offer commercial rates without demand charges

Others incorporate 20 kW to 50 kW demand thresholds

Nissan Leaf is demand charge free in some electric utility service territories

DCFC Lessons Learned

<table>
<thead>
<tr>
<th>No Demand Charges - Nissan Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
</tr>
<tr>
<td>Pacific Gas & Electric</td>
</tr>
<tr>
<td>City of Palo Alto</td>
</tr>
<tr>
<td>Alameda Municipal Power</td>
</tr>
<tr>
<td>Silicon Valley Power</td>
</tr>
<tr>
<td>AZ</td>
</tr>
<tr>
<td>Tucson Electric Power</td>
</tr>
<tr>
<td>OR</td>
</tr>
<tr>
<td>Eugene Water & Electric Board</td>
</tr>
<tr>
<td>Lane Electric Co-op</td>
</tr>
<tr>
<td>TN</td>
</tr>
<tr>
<td>Middle Tennessee Electric</td>
</tr>
<tr>
<td>Duck River Electric</td>
</tr>
<tr>
<td>Harriman Utility Board</td>
</tr>
<tr>
<td>Athens Utility Board</td>
</tr>
<tr>
<td>Cookeville Electric Department</td>
</tr>
<tr>
<td>Cleveland Utilities</td>
</tr>
<tr>
<td>Nashville Electric Service</td>
</tr>
<tr>
<td>EPB Chattanooga</td>
</tr>
<tr>
<td>Lenoir City Utility Board</td>
</tr>
<tr>
<td>Volunteer Electric Cooperative</td>
</tr>
<tr>
<td>Murfreesboro Electric</td>
</tr>
<tr>
<td>Sequachee Valley Electric Cooperative</td>
</tr>
<tr>
<td>Knoxville Utility Board</td>
</tr>
<tr>
<td>Maryville</td>
</tr>
<tr>
<td>Fort Loudoun Electric</td>
</tr>
<tr>
<td>Memphis Light Gas and Water Division</td>
</tr>
</tbody>
</table>
DCFC Commercial Lessons Learned

- Especially in California, DC fast charge demand charges are significant in many utility service territories

<table>
<thead>
<tr>
<th>Utility Demand Charges - Nissan Leaf</th>
<th>Cost/mo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td></td>
</tr>
<tr>
<td>Glendale Water and Power</td>
<td>$16.00</td>
</tr>
<tr>
<td>Hercules Municipal Utility:</td>
<td>$377.00</td>
</tr>
<tr>
<td>Los Angeles Department of Water and Power</td>
<td>$700.00</td>
</tr>
<tr>
<td>Burbank Water and Power</td>
<td>$1,052.00</td>
</tr>
<tr>
<td>San Diego Gas and Electric</td>
<td>$1,061.00</td>
</tr>
<tr>
<td>Southern California Edison</td>
<td>$1,460.00</td>
</tr>
<tr>
<td>AZ</td>
<td></td>
</tr>
<tr>
<td>TRICO Electric Cooperative</td>
<td>$180.00</td>
</tr>
<tr>
<td>The Salt River Project</td>
<td>$210.50</td>
</tr>
<tr>
<td>Arizona Public Service</td>
<td>$483.75</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Pacificorp</td>
<td>$213.00</td>
</tr>
<tr>
<td>WA</td>
<td></td>
</tr>
<tr>
<td>Seattle City Light</td>
<td>$61.00</td>
</tr>
</tbody>
</table>
L2 Commercial Lessons Learned

• ADA significantly drives cost
 - Accessible charger
 - Van accessible parking
 - Accessible electric and passage routes to facility

• Permit fees and delays can be significant
 - Load studies
 - Zoning reviews
Commercial Level 2 Permits Cost

- Commercial permits range $14 to $821

<table>
<thead>
<tr>
<th>Region</th>
<th>Count of Permits</th>
<th>Average Permit Fee</th>
<th>Minimum Permit Fee</th>
<th>Maximum Permit Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>72</td>
<td>$228</td>
<td>$35</td>
<td>$542</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>17</td>
<td>$195</td>
<td>$67</td>
<td>$650</td>
</tr>
<tr>
<td>San Diego</td>
<td>17</td>
<td>$361</td>
<td>$44</td>
<td>$821</td>
</tr>
<tr>
<td>Texas</td>
<td>47</td>
<td>$150</td>
<td>$37</td>
<td>$775</td>
</tr>
<tr>
<td>Tennessee</td>
<td>159</td>
<td>$71</td>
<td>$19</td>
<td>$216</td>
</tr>
<tr>
<td>Oregon</td>
<td>102</td>
<td>$112</td>
<td>$14</td>
<td>$291</td>
</tr>
<tr>
<td>Washington</td>
<td>33</td>
<td>$189</td>
<td>$57</td>
<td>$590</td>
</tr>
</tbody>
</table>
Commerical Level 2 Installation Costs

• Nationally, commercially sited Level 2 EVSE average between $3,500 and $4,500 for the installation cost
 – Does not include EVSE hardware
• There is much variability by region and by installation
 – Multiple Level 2 units at one location drive down the per EVSE average installation cost
 – Tennessee and Arizona have average installation costs of $2,000 to $2,500
• Costs are significantly driven by poor sitting requests
 – Example: mayor may want EVSE by front door of city hall, but electric service is located at back of building
Residential Level 2 EVSE Installation Costs

- Max - $8,429
- Mean $1,414
- Min $250
- Medium $1,265

- Count 4,466
- Total installation costs do not include EVSE hardware
Residential Level 2 EVSE Installation Costs

- Regional results for 4,466 units
- Permit versus other installation costs. No EVSE costs
Residential Level 2 EVSE Installation Costs

- Regional results for 4,466 units
- Permit versus other installation costs. No EVSE costs

![Bar chart showing Level 2 Residential Installation Costs - Percentages](chart.png)
Residential Level 2 Installation Costs

• High cost drivers
 – Upgrading or replacing ($8,429) residential electrical service
 – Not installing near the service panel
 – Desire to site away from the house
 – Cutting concrete or asphalt driveway or other surfaces

• Low cost drivers
 – Existing 240 V outlet in the garage ($250)
 – Simple addition of a breaker and minimal conduit run
 – Room in the garage
Acknowledgement

This work is supported by the U.S. Department of Energy’s EERE Vehicle Technologies Program

http://avt.inl.gov
Presentation in the Publications Link (Left blue bar menu)