

Plug-in 2013 - EV Project Charging Infrastructure Deployment Costs, Cost Drivers and Use

Jim Francfort Idaho National Laboratory Session B3: Getting the Cost Out - Best Practices for PEV Infrastructure October 2013

Vehicle / Infrastructure Testing Experience

- 120 million test miles accumulated on 11,600 electric drive vehicles and 16,800+ EVSE and DCFC
- EV Project: 8,110 Leafs, Volts and Smart EVs, 12,604 EVSE and DC Fast Chargers (DCFC), 100 million test miles. 1 million miles every 6 days
- Charge Point: 4,217 EVSE reporting 997,000 charge events
- PHEVs: 15 models, 434 PHEVs, 4 million test miles
- EREVs: 2 model, 156 EREVs, 2.3 million test miles
- HEVs: 24 models, 58 HEVs, 6.4 million test miles
- Micro hybrid (stop/start) vehicles: 3 models, 7 MHVs, 608,000 test miles
- NEVs: 24 models, 372 NEVs, 200,000 test miles
- BEVs: 48 models, 2,000 BEVs, 5 million test miles
- UEVs: 3 models, 460 UEVs, 1 million test miles
- Other testing includes hydrogen ICE vehicle and infrastructure testing

INL Vehicle/EVSE Data Management Process

EV Project Goal, Locations, Participants, and Reporting

- 50-50 DOE ARRA and ECOtality North America funded
- Goal: Build and study mature charging infrastructures and take the lessons learned to support the future streamlined deployment of grid-connected electric drive vehicles
- ECOtality is the EV Project lead, with INL, Nissan and OnStar/GM as the prime partners, with more than 40 other partners such as electric utilities and government groups

EVSE Data Parameters Collected per Charge Event

- Data from ECOtality's Blink & other EVSE networks
- Connect and Disconnect Times
- Start and End Charge Times
- Maximum Instantaneous Peak Power
- Average Power
- Total energy (kWh) per charging event
- Rolling 15 Minute Average Peak Power
- Date/Time Stamp
- Unique ID for Charging Event
- Unique ID Identifying the EVSE
- And other non-dynamic EVSE information (GPS, ID, type, contact info, etc.)

Vehicle Data Parameters Collected per Start /Stop Event

- Data is received via telematics providers from Chevrolet Volts and Nissan Leafs
- Odometer
- Battery state of charge
- Date/Time Stamp
- Vehicle ID
- Event type (key on / key off)
- GPS (longitude and latitude)
- Recorded for each key-on and key-off event

 Additional data is received monthly from Car2go for the Smart EVs

Data Collection, Security and Protection

- All vehicle, EVSE, and PII raw data is legally protected by NDAs (Non Disclosure Agreements) or CRADAs (Cooperative Research and Development Agreements)
 - Limitations on how proprietary and personally identifiable information can be stored and distributed
 - Raw data, in both electronic and printed formats, is not shared with DOE in order to avoid exposure to FOIA
 - Vehicle and EVSE data collection would not occur unless testing partners trust INL would strictly adhere to NDAs and CRADAs
 - Raw data cannot be legally distributed by INL

EV Project – National Data

2nd quarter 2013 Data Only

	<u>Leafs</u>	<u>Volts</u>
 Number of vehicles 	4,261	1,895
 Number of Trips 	1,135,000	676,000
 Distance (million miles) 	8.04	5.75
 Average (Ave) trip distance 	7.1 mi	8.3 mi
 Ave distance per day 	29.5 mi	41.0 mi
 Ave number (#) trips between charging events 	3.8	3.3
 Ave distance between charging events 	26.7 mi	27.6 mi
 Ave # charging events per day 	1.1	1.5

* Note that per day data is only for days a vehicle is driven

Residential & Public Level 2 EVSE Use

• Weekday EVSE 2nd Quarter 2013. Residential and public connect time and energy use are fairly opposite profiles.

Legend: 91 day reporting period. Data is max (blue line), mean (black line) and minimum (green line), for the reporting period. Dark gray shaded is plus and minus 25% quartile. Same legend all demand and connect time graphs

Residential Level 2 EVSE Connect Profiles

- Weekday EVSE 2nd Quarter 2013
- San Diego and San Francisco, with residential L2 TOU rates, are similar to other regional EVSE connect profiles

San Francisco

Los Angeles

Washington State

Residential Level 2 EVSE Demand Profiles

- Residential Level 2 Weekday EVSE 2nd Quarter 2013
- TOU kWh rates in San Diego and San Francisco clearly impact when vehicle charging start times are set

San Francisco

EV Project – EVSE Connect & Power

Residential

Distribution of Length of Time with a Vehicle Connected per Charging Event

Length of time connected per charging event (hr)

Distribution of Length of Time with a Vehicle Drawing Power per Charging Event

Length of time with vehicle drawing power per charging event (hr)

Non Residential Public

Distribution of Length of Time with a Vehicle Connected per Charging Event

Length of time connected per charging event (hr)

Distribution of Length of Time with a Vehicle Drawing Power per Charging Event

per charging event (hr)

Residential vs. Public Use Rates

 Note 5.4 to 1 weekly Residential EVSE use rate versus weekly Public Level 2 EVSE use rate (last 5 weeks)

EVSE DCFC Use

DC Fast Chargers Weekday 2st Quarter 2013
87 DCFC, 27,000 charge events and 223 AC MWh

Weekday Demand Profile

- EV Project Leafs 25% charge events and 24% energy used
- Unknowns are Non EV Project vehicles
- 3.8 average charge events per day per DCFC
- 19.5 minutes average time connected
- 19.5 minutes average time drawing energy
- 8.3 kWh average energy consumed per charge

EV Project – DCFC Power Levels

- DC Fast Chargers Weekday 1st Quarter 2013
- 72 DCFC, 13,500 charge events and 102 AC MWh

EV Project – DCFC Connect Time

 Distribution of time vehicle connected per DCFC event for all regions. No connect times are greater than 60 minutes

EV Project – DCFC Energy Delivered

- Distribution of energy delivered per DCFC event for all regions. No charge event delivered more than 18 kWh
- Data from all DCFC, life of project

EV Project – DCFC Versus Level 2 Public

- Number of charge events per publicly accessible Level 2 EVSE versus per DCFC in the 1st Quarter 2013
- Nationally, 17 events per public L2 EVSE & 188 per DCFC

DCFC Installation Costs / Issues

- Current installations range from \$8,500 to \$48,000 (99 units)
- Average installation cost to date is about \$21,000
- Host has obvious commitment for the parking and ground space - not included in above costs
- Above does not include any costs that electric utility may have incurred in evaluating or upgrading service
- These are the preliminary costs to date. When all 200 DC Fast Chargers are installed, installation costs may be different
 - All the best (lower-cost) sites are installed first, so final costs may be higher
 - Lessons learned may help lower future costs and site selections, so final costs may be lower

DCFC Individual Installation Costs

- Total installation costs (99 units)
- Does not include DCFC hardware

DCFC Installation Costs

Total installation costs (99 units)

 Includes everything EV Project has funded per DCFC installation except DCFC charging unit

Number per Region	National - 99	AZ - 17	WA - 12	CA - 37	OR - 15	TN - 16
Minimum	\$8,440	\$8,440	\$18,368	\$10,538	\$12,868	\$14,419
Mean	\$20,848	\$15,948	\$24,001	\$21,449	\$19,584	\$23,271
Maximum	\$47,708	\$33,990	\$33,246	\$47,708	\$26,766	\$31,414

DCFC Individual Installation Costs

- Total installation costs (99 units)
- Does not include DCFC hardware

DCFC Installation Costs / Issues

- Items of concern associated with installation that drive costs
 - Power upgrades needed for site
 - Impact on local transformer
 - Ground surface material and cost to "put back" (e.g. concrete, asphalt, landscaping)
 - Other underground services that may affect method of trenching power to DCFC
 - Gatekeeper or decision-maker for the property is not always apparent
 - Magnitude of operating costs and revenue opportunities are still largely unknown
 - Time associated with permissions
 - Permits, load studies, and pre-, post-, and interim inspections

DCFC Lessons Learned

Demand and energy costs are significant for some utilities

- 25¢/kWh
- **\$25/kW**
- Some utilities offer commercial rates without demand charges
- Others incorporate 20 kW to 50 kW demand thresholds
- Nissan Leaf is demand charge free in some electric utility service territories

N	o Demand Charges - Nissan Leaf	
CA	Pacific Gas & Electric	
	City of Palo Alto	
	Alameda Municipal Power	
	Silicon Valley Power	
AZ	Tucson Electric Power	
OR	Eugene Water & Electric Board	
	Lane Electric Co-op	
TN	Middle Tennessee Electric	
	Duck River Electric	
	Harriman Utility Board	
	Athens Utility Board	
	Cookeville Electric Department	
	Cleveland Utilities	
	Nashville Electric Service	
	EPB Chattanooga	
	Lenoir City Utility Board	
	Volunteer Electric Cooperative	
	Murfreesboro Electric	
	Sequachee Valley Electric Cooperative	
	Knoxville Utility Board	
	Maryville	
	Fort Loudoun Electric	
	Memphis Light Gas and Water Division	

DCFC Commercial Lessons Learned

Especially in California, DC fast charge demand charges are significant in many utility service territories

Utility Demand Charges - Nissan Leaf		Cost/mo.	
CA	Glendale Water and Power	\$	16.00
	Hercules Municipal Utility:	\$	377.00
	Los Angeles Department of Water and Power	\$	700.00
	Burbank Water and Power	\$	1,052.00
	San Diego Gas and Electric	\$	1,061.00
	Southern California Edison	\$	1,460.00
AZ	TRICO Electric Cooperative	\$	180.00
	The Salt River Project	\$	210.50
	Arizona Public Service	\$	483.75
OR	Pacificorp	\$	213.00
WA	Seattle City Light	\$	61.00

L2 Commercial Lessons Learned

ADA significantly drives cost

- Accessible charger
- Van accessible parking
- Accessible electric and passage routes to facility
- Permit fees and delays can be significant
 - Load studies
 - Zoning reviews

Commercial Level 2 Permits Cost

Commercial permits range \$14 to \$821

Region	Count of Permits	Average Permit Fee	Minimum Permit Fee	Maximum Permit Fee
Arizona	72	\$228	\$35	\$542
Los Angeles	17	\$195	\$67	\$650
San Diego	17	\$361	\$44	\$821
Texas	47	\$150	\$37	\$775
Tennessee	159	\$71	\$19	\$216
Oregon	102	\$112	\$14	\$291
Washington	33	\$189	\$57	\$590

Commerical Level 2 Installation Costs

- Nationally, commercially sited Level 2 EVSE average between \$3,500 and \$4,500 for the installation cost
 - Does not include EVSE hardware
- There is much variability by region and by installation
 - Multiple Level 2 units at one location drive down the per EVSE average installation cost
 - Tennessee and Arizona have average installation costs of \$2,000 to \$2,500
- Costs are significantly driven by poor sitting requests
 - Example: mayor may want EVSE by front door of city hall, but electric service is located at back of building

Residential Level 2 EVSE Installation Costs

- Max \$8,429
- Mean \$1,414
- Min \$250
- Medium \$1,265

- Count 4,466
- Total installation costs do not include EVSE hardware

Residential Level 2 EVSE Installation Costs

- Regional results for 4,466 units
- Permit versus other installation costs. No EVSE costs

Residential Level 2 EVSE Installation Costs

- Regional results for 4,466 units
- Permit versus other installation costs. No EVSE costs

Residential Level 2 Installation Costs

- High cost drivers
 - Upgrading or replacing (\$8,429) residential electrical service
 - Not installing near the service panel
 - Desire to site away from the house
 - Cutting concrete or asphalt driveway or other surfaces
- Low cost drivers
 - Existing 240 V outlet in the garage (\$250)
 - Simple addition of a breaker and minimal conduit run
 - Room in the garage

Acknowledgement

This work is supported by the U.S. Department of Energy's EERE Vehicle Technologies Program

http://avt.inl.gov

Presentation in the Publications Link (Left blue bar menu)

INL/CON-13-30288