

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

PHEV Laboratory Testing and Analysis

Don Hillebrand, Michael Duoba

Argonne National Laboratory

PHEV Stakeholders Meeting, Washington DC

June 13, 2007

FreedomCAR & Vehicle Technologies Program

Advanced Powertrain Research Facility

- ANL benchmarking hybrids for DOE, PNGV/FreedomCAR since 1998
- 4WD Dyno Facility is DOE's benchmark facility
- Designed from the start to test HEVs and other advanced technology (H2, diesel etc)

PHEV Vehicle Testing at Argonne National Lab

Testing Completed

- Kokam Hymotion Prius, dedicated test vehicle
- EnergyCS Prius ver.1 and ver.2, AVTA vehicle
- A123 Hymotion Prius, AVTA vehicle
- Renault Kangoo, AVTA vehicle

Future PHEV testing

- AVTA and NYSERDA PHEV's
- Hybrids Plus Prius (Level 2)
- Hybrids Plus Escape (Level 2)
- ANL prototypes
 - Through-the-road parallel PHEV
 - Series PHEV (S10 EV with gen-set)

How Were They Tested/Evaluated?

- "5-Day PHEV Test Procedure" developed for AVTA vehicles
- Used "Full Charge Test" (FCT) for UDDS and HWY
- Tested charge-sustaining UDDS pair (for emissions)
- US06 tests in depleting and sustaining modes

How Did They Perform? - Full Charge Test Results

UDDS Cycle Charge Depletion Operation	Average Depleting MPG	Ave Battery Usage [Whr/mi]	CD range [miles]	Usable Energy [kWbrs]	Petroleum Displacement Factor [%]	Charge- Sustaining MPG
Kakam Hymotian Brive	178	126	24	2.9	61%	66.4
A122 Hymotion Prius	160	129	25	3.1	60%	64.4
EnergyCS Prius	139	131	34	4.5	55%	62.2
EnergyC5 Prius	100	101	54	ч.0	5570	02.2

HWY Cycle Charge Depletion Operation	Average Depleting MPG	Ave Battery Usage [Whr/mi]	CD range [miles]	Usable Energy [kWhrs]	Petroleum Displacement Factor [%]	Charge- Sustaining MPG
Kokam Hymotion Prius	122	98	33	3.2	48%	64.0
A123 Hymotion Prius	101	113	31	3.4	46%	55.0
EnergyCS Prius	103	103	50	4.9	44%	58.1

How Can We Analyze The Results? - 2D Energy Utilization Plot

- Essentially a "SOC Correction Plot" from J1711
- Two Points of interest
 - SOC-balanced fuel consumption
 - Electric-only battery consumption
- Charge depletion rates can vary, but if fuel and battery/drive efficiencies are maintained, results fall on a single line

Energy Utilization Plot: EnergyCS Prius

Energy Utilization Plot: Hymotion Prius

Prius Engine-On Requirements in Blended Mode

- Prius power-split not suited for engine-off in UDDS cycle
- Engine Turns On:
 - Emissions control
 - Speed Limitation
 - Power Limitation

Optimized Charge-Sustaining Controls Compromised in Prius PHEV Retrofit

- Engine efficiency reduced due to unloading engine during depletion
- More time spent in inefficient zones, peak efficiencies are rarely utilized

Blended Mode Test Conclusions

- Retro-fits all operate in a similar manner
 - Use of EV mode switch on Prius to quickly deplete in urban driving
 - Compromise in engine efficiency when engine unloaded for more depletion
 - Other platforms will probably deplete slower (on UDDS) in the absence of EV mode switch
- Retro-fit petroleum displacement fraction is limited by:
 - Single input power-split configuration (EV speed limitations)
 - Vehicle controls limit allowable battery power
- Low emissions can be maintained only if stock controls are left to manage initial engine starts
- Blended mode procedures were developed based upon Prius PHEV testing
 - Shortcuts were developed and are being investigated
 - Need All-electric PHEV mule for further procedure development

AER PHEV Platforms Needed For Procedure Development and Technology Benchmarking

PHEVequivalent = Based upon energy capacity and "theoretical EV consumption rate"

Argonne's AER Platforms: "Through The Road" Parallel Prototype and S-10 Series PHEV

- TTR: Two drive systems to choose from, several battery packs to utilize
- S-10: under-powered but useful as test procedure tool
- Also under development Chevy "Volt" sized series prototype

SAE J1711-1999 Re-Issue Details

- Monthly meetings since Aug of 2006
- Consensus is that the PHEV parts of the procedure were under-developed and did not consider "blended" mode operation for plug-ins
- J1711 needs have expanded since 1999, now need to satisfy the following test requirements
 - 1. Emissions certification
 - 2. CAFE fuel economy calculation
 - 3. EPA "5-cycle" label fuel economy (includes US06, SC03, Cold CO)
 - 4. Definitions for all-electric range, amount of petroleum displacement, etc.
- Consensus changes to J1711
 - Do not combine fuel and electricity into a single composite MPG
 - Blended mode needs to be addressed in a different manner
- Several key issues still remain unsolved
 - Prep procedures, utility factors, hot/cold weighting, test length, AER emissions
- Timeline
 - Blended mode PHEV procedures concept available in September
 - All-electric capable PHEVs tested in Aug/Sept, draft procedures in December
 - Draft J1711 ready for balloting sometime in 2008

