daho National Laboratory

U.S. Department of Energy -Advanced Vehicle Testing Activity

PHEV Field Test Plans and Testing Results

DOE PHEV Annual Review Meeting -Washington DC. June 2007

Jim Francfort (INL) Don Karner (ETA)

Presentation

- Background & goal
- Test plan development
- Test methods
- PHEVs in testing
- Testing results to date
 - Gasoline & electricity use
 - Combined fuel costs on a per mile basis
- PHEV payback based on fuel cost savings
- PHEV potential petroleum reductions
- Future PHEV activities

AVTA Background & Goal

- The Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program
- The AVTA is primarily conducted by the Idaho National Laboratory (INL) & Electric Transportation Applications (ETA - Phoenix, AZ), with Argonne National Laboratory performing dynamometer testing
- AVTA Goal
 - Provide benchmark data to technology modelers, & research & development programs
 - Also assist fleet managers in making informed vehicle purchase, deployment & operating decisions

AVTA Testing History

- Hybrid electric vehicles
 - 12 models, 3 million test miles
- Hydrogen ICE (internal combustion engine) vehicles
 - 6 models, 400,000 test miles
- Full-size electric vehicles
 - 40 EV models, 5+ million test miles
- Neighborhood electric vehicles
 - 15 models, 200,000 test miles
- Urban electric vehicles
 - 3 models, 1 million test miles
- Oil bypass filters
 - 2 models, 1.3 million test miles

PHEV Test Plan Development

- Developed 400-page vehicle specifications & test procedures document for:
 - Baseline performance testing (closed track & dyno)
 - Accelerated testing (defined onroad testing)
 - Battery testing (after baseline & accelerated testing)
 - Fleet testing
- Developed with the anticipation of testing PHEVs from converters & OEMs
 - Initial draft reviewed by ANL & NREL, with two PHEVs tested to validate procedures
 - Second draft being commented on by OEMs, PHEV converters, FeedomCAR Tech Teams, & others
 - Third draft to be distributed all PHEV Stakeholders

PHEV Baseline Performance Testing

- Initial track testing conducted by ETA near Phoenix
 - Testing includes coastdown (determination of dynamometer coefficients), acceleration, top speed, charging, & durability
- Five day dynamometer testing regime performed at Argonne
 - Testing includes at least 26 drive cycle tests
 - Charge depleting & sustaining test cycles
 - UDDS, HWFEDs & US06 cycles

Electric Transportation Applications

- Includes air conditioning (AC) off & on cycles

PHEV Baseline Performance Testing – cont'd

- If vehicle option, conduct Rechargeable Energy Storage System (RESS) Only mode baseline performance testing with & without A/C:
 - Day 1, RESS Only mode A/C off
 - UDDS, UDDS, HWFEDS, HWFEDS
 - UDDS, UDDS, HWFEDS, HWFEDS
 - Repeat as able, than charge traction battery
 - Day 2, RESS Only mode A/C on
 - UDDS, UDDS, HWFEDS, HWFEDS
 - UDDS, UDDS, HWFEDS, HWFEDS
 - Repeat as able

PHEV Accelerated Testing

- Accelerated testing in Phoenix over 4,240 miles
- GPS units track distance, average & maximum speeds

Cycle	Urban	Highway	Charge	Reps	Total	Reps	Miles	Cum.
(mi)	(10 mi)	(10 mi)	(hr)	(N)	(mi)	(%)	(%)	(mi)
10	1	0	4	60	600	45%	14%	600
20	1	1	8	30	600	23%	14%	1200
40	4	0	12	5	200	4%	5%	1400
40	2	2	12	5	200	4%	5%	1600
40	0	4	12	5	200	4%	5%	1800
60	2	4	12	10	600	8%	14%	2400
80	2	6	12	8	640	6%	15%	3040
100	2	8	12	6	600	5%	14%	3640
200	2	18	12	3	600	2%	14%	4240
Total	1740	2500	984	132	4240			4240
Average	41%	59%	7.5	32.1				

AVTA PHEVs Currently Being Tested

- EnergyCS Prius 9 kWh Valence lithium pack
 - Completed baseline performance testing
 - Completed 1,000 miles of accelerated testing
- Hymotion Prius 5 kWh A123 lithium (& Prius pack)
 - Completed baseline performance testing
 - Started accelerated testing
- Renault Kangoo 9.6 kWh (measured usable) NiCad pack & 650 cc gasoline engine (series hybrid)
 - Completed baseline performance testing
 - Completed 600 miles of accelerated testing
- Additional vehicles in cooperation with NYSERDA

NYSERDA PHEVs Testing Status

- Support NYSERDA's PHEV deployment by conducting baseline performance & accelerated testing on six PHEV conversion models
 - EnergyCS Prius: testing AVTA vehicle as surrogate.
 Vehicle delivered to New York
 - Hymotion Prius: testing AVTA vehicle as surrogate.
 Vehicle delivered to New York
 - Hymotion Civic: June delivery
 - Hymotion Escape: June delivery
 - Electovaya Escape: June delivery
 - HybridsPlus Prius: July delivery
 - Some rolling delivery delays

EnergyCS Prius – UDDS Fuel Use

EnergyCS Prius – HWFET Fuel Use

Hymotion Prius – UDDS Fuel Use

Hymotion Prius – HWFET Fuel Use

kWh – A/C at the wall

EnergyCS Prius – Fuel Costs

kWh – A/C at the wall

Hymotion Prius – Fuel Costs

kWh – A/C at the wall

EnergyCS Prius Accelerated Testing

Cycle	Urban	HWY	Charge	Reps	Total	Actual			
(mi)	(10 mi)	(10 mi)	(hr)	(N)	(mi)	(mi)	MPG	Miles / kWh	
40	2	2	12	5	200	206	144.3	6.87	
40	0	4	12	5	200	208	85.5	7.17	
60	2	4	12	10	600	621	103.7	10.02	
Total	4	10	240	20	1,000	1,035	109.1	8.82	
				Gas \$ / Mile		kWh \$ / Mile		Total Fuel \$ / Mile	
40	2	2	12	\$0.023		\$0.015		\$0.037	
40	0	4	12	\$0.038		\$0.014		\$0.052	
60	2	4	12	\$0.031		\$0.010		\$0.041	
Weighted Average - (miles)				\$0.031		\$0.012		\$0.043	

• Assumes gasoline \$3.25 / gallon & \$0.10 kWh

Kangoo – Test Results

Test Cycle	A/C kWh per Mile	Miles per Gallon
Battery Only - UDDS	0.268	
Battery Only - HWFET	0.155	
Battery Only @ Constant 45 mpg	0.271	
Battery & Gas Cold UDDS	0.144	42.3
Battery & Gas Hot UDDS	0.110	39.4
Battery & Gas Hot HWFET	0.042	40.9
60 Battery Only 10-mile Accelerated Cycles	0.481	

Kangoo – Fuel Cost per Mile

Combined ECS & Hymotion Fuel Costs

PHEV (ECS/HYM) Payback Assumptions

- Average gas & kWh costs driving 40 & 60 miles / day
 - Both PHEVs in UDDS average: ~\$0.039 / mile
 - Both PHEVs in HWFET average: ~\$0.051 / mile
 - EnergyCS accelerated test: ~\$0.043 / mile
- Versus HEV Prius @ 45 mpg: \$0.072
- AVTA's PHEVs cost from \$15k to \$40k (\$40k includes data logger). Using \$15 and \$30k (assumes no data logger), average incremental PHEV cost is \$22.5k
- Ignores additional battery replacement costs & any additional costs if a vehicle warranty is voided
- Payback = PHEV incremental cost compared to lower PHEV fuel cost per mile than HEV fuel cost per mile

PHEV (ECS/HYM) Payback

	Miles Driven	Fuel Savings	Conversion	Miles to	Years to
	Per Day	Per Mile	Cost	Payback	Payback
HWFET	40	\$0.021	\$22,500	1,071,429	73
HWFET	60	\$0.021	\$22,500	1,071,429	49
UDDS	40	\$0.033	\$22,500	681,818	47
UDDS	60	\$0.033	\$22,500	681,818	31

• 40 miles / day = 14.6k miles / year. 60 miles / per day = 21.9k miles / year

PHEV incremental cost = \$22.5k. \$3.25 gasoline & \$0.10 kWh

- Based on UDDS fuel savings & PHEV DC kWh use
 - A 100,000-mile, 5-year payback, ~60 miles / day,
 = \$3,300 battery with 3.1 to 4.7 usable DC kWh
 - Assuming 70% maximum DOD, no life-time capacity loss, = battery with 4.4 to 6.7 DC kWh at \$3,300

Potential Petroleum Displacement for a Single Vehicle, Over 100,000 Miles

Potential Annual Petroleum Displacement For Entire Federal Fleet of Passenger Cars

FreedomCA

Partnership

Potential Annual Petroleum Displacement For Entire U.S. Fleet of Passenger Cars

FreedomCA

Partnership

PHEV Additional / Future Testing

- Working with EnergyCS to collect onboard fleet data for vehicles operating in California, Canada & Arizona
- Working with Hymotion to collect fleet data on their 30+ vehicles already deployed
- Work with NYSERDA to collect fleet data on PHEVs introduced into New York State fleets
- Collect fleet data on any AVTA-operated PHEVs
- Possibly collect fleet data with SCAQMD
- Exploring other PHEV data collection opportunities
- The AVTA will continue to obtain viable PHEVs for baseline performance, accelerated, fleet & battery testing

Acknowledgement

This work is supported by DOE's FreedomCAR and Vehicle Technologies Program Vehicle Systems Team Leader, Tien Duong Project Leader and VSATT Lead, Lee Slezak

Additional Information

http://avt.inl.gov

INL/CON-07-12749

