U.S. Department of Energy FreedomCAR & Vehicle Technologies Program

Advanced Vehicle Testing Activity

Hydrogen Station & ICE Vehicle Operations and Testing

Jim Francfort for Lee Slezak

WestStart CALSTART Hydrogen Internal Combustion Engine Symposium – February 2006

Presentation Outline

- Background and Goal
- Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design and operations
- Fuel Dispensing
- Prototype Dispenser Testing
- Hydrogen and HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities
- WWW Information

AVTA Background and Goal

- AVTA is part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program
- These activities are conducted by the Idaho National Laboratory (INL) and the AVTA testing partner Electric Transportation Applications
- AVTA Goal Provide benchmark data for technology modeling, research and development programs, and help fleet managers and other vehicle purchasers make informed purchase and operations decisions

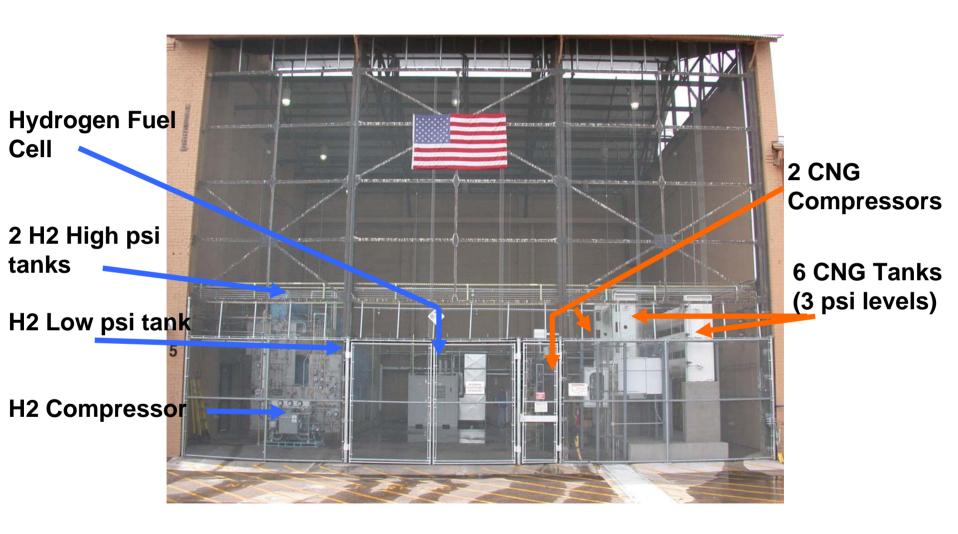
AVTA Background

- Full-size pure EVs (40 models, 5 million test miles)
- Neighborhood EVs (15 models)
- Urban EVs (3 models, 1.75 million test miles)
- Hybrid EVs (9 models, 28 HEVs, 1.75 million miles)
- Hydrogen ICE vehicles (several models, 300k miles)
- Oil bypass filter testing (17 vehicles, 1.2 million miles)

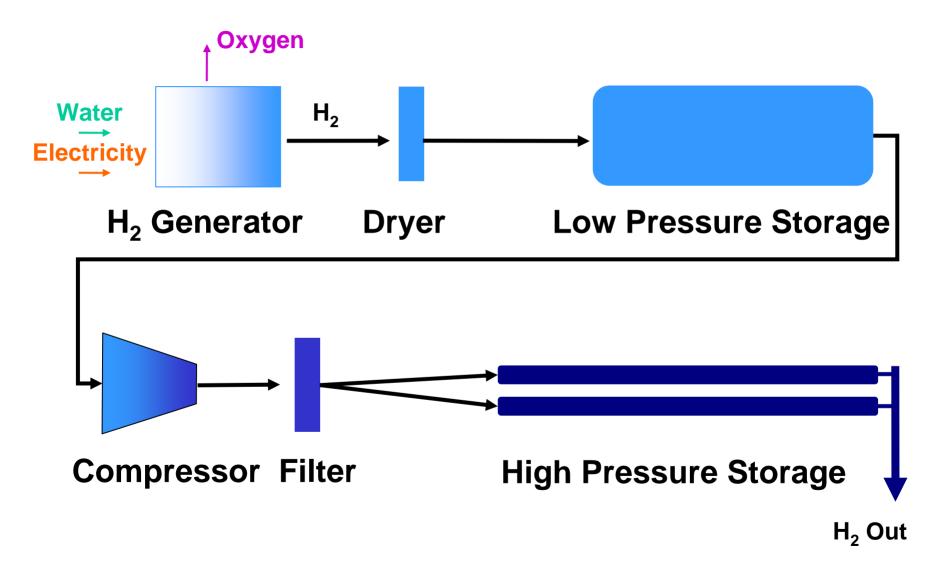
APS Alternative Fuel (Hydrogen) Pilot Plant- Partners

- Arizona Public Service (APS)
- Electric Transportation Applications (ETA)
- U.S. Department of Energy (DOE)
- Idaho National Laboratory (INL)

Operating since June 2002

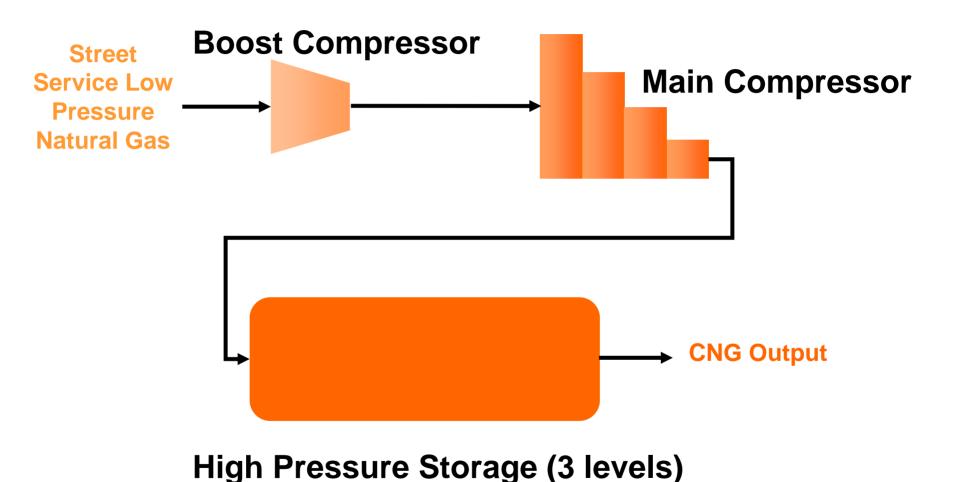


Pilot Plant & Hydrogen ICE Vehicle Testing Objectives


- Evaluate the safety & reliability of operating ICE vehicles on 100% hydrogen and hydrogen/compressed natural gas (HCNG) blended fuels (15 to 50% HCNG)
- Evaluate hydrogen fueling infrastructure costs
- Quantify hydrogen and HCNG ICE vehicle costs, performance, and emissions

Pilot Plant - Layout

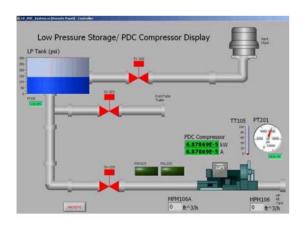
Pilot Plant - Hydrogen Subsystem

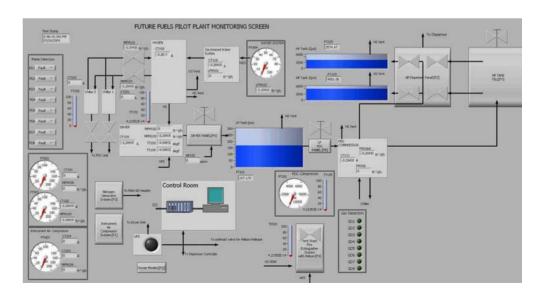


Pilot Plant - Hydrogen Storage

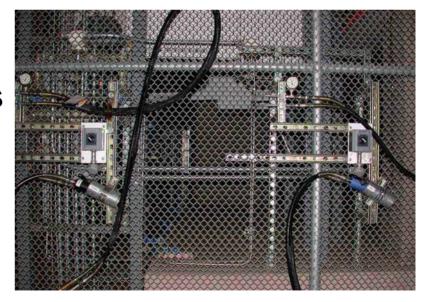
- Low pressure hydrogen storage (lower tank) -8,955 SCF @ 150 psi
- High pressure hydrogen storage (upper 2 tanks) -17,386 SCF @ 6,000 psi (total both tanks)

Pilot Plant - CNG Substation


Pilot Plant - Fueling Dispensers


- Includes metering and electronic billing interface
- Fully permitted for motor fuel dispensing
- Public access

Pilot Plant - Monitoring


- 6,000 fueling events & 7,200 kg of hydrogen produced
- Hydrogen kg energy costs based on historical (26% to 49%) and projected (70%) plant factors
 - \$3.43 down (26% PF) to \$2.39 per kg (70% PF)
 - DOE 2005 energy cost target \$2.47
- Water cost per kg of hydrogen \$0.10

Prototype Dispenser Testing

- Uses proportional flow control valves for hydrogen and CNG gas streams to control gas flow rates from 100 to 40,000 scfh
- Dispenser controller adjusts the control valves to provide real-time ratio control of blended fuels
- Control valves are trimmed by a digital dispenser controller using mass flow signals provided by coriolis mass flow transducers in the hydrogen and CNG gas streams

Prototype Dispenser Testing

- Delivers 100% hydrogen, 100% CNG, and blends of HCNG using two independent single nozzles to fuel AVTA test vehicles
 - 1 Nozzle CNG and HCNG fuels (15, 20, 30, and 50% hydrogen - by volume) at 3,600 psi
 - 1 Nozzle 100% hydrogen dispensing at 5,000 psig
- Next step commercial package

Hydrogen and HCNG ICE Vehicle Testing

- Initial ICE hydrogen and HCNG vehicle testing
 - Dodge van on 15% HCNG (continues in testing)
 - Ford F150 up to 30% HCNG (continues in testing)
 - Ford F150 up to 50% HCNG (testing complete)
 - 100% hydrogen Mercedes Benz van (operating)

15% HCNG Dodge Van Emissions Testing

- 5.2 L CNG V8 (no modifications) with 71,000 HCNG test miles - no problems
- 27,000 miles of 15% HCNG fuel data 15.5 miles/GGE

Percentage change in 15% HCNG emissions compared to 100% CNG emissions		
Total hydrocarbons	-34.7%	
Carbon monoxide	-55.4%	
Oxides of nitrogen	+92.1%	
Carbon dioxide	-11.3%	

30% HCNG F150 Testing

- 5.4 L V8 CNG engine added: supercharger, ignition modifications & exhaust gas recirculator
- Fleet testing 54,000 30% HCNG miles: 17.5 miles/GGE

Fuel Blend	0 to 60 mph (secs.)	Miles/GGE	Range (miles)
CNG	10.10	23.3	122
15% HCNG	10.97	22.6	110
30% HCNG	12.68	23.5	102

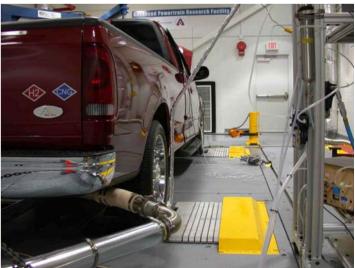
30% HCNG F150 Emissions Testing

Fuel	Percentage Change in Emissions Testing					
Туре	NMHC	CH ₄	нс	СО	NO _X	CO ₂
Gasoline	Base	Base	Base	Base	Base	Base
CNG	-80	+967	+35	-63	-34	-24
15% HCNG	-78	+1000	+40	-70	-26	-27
30% HCNG	-89	+1050	+37	-73	-25	-28

NMHC=Non-Methane Hydrocarbons HC=Total Hydrocarbons NOx=Oxides of Nitrogen CH₄=Methane CO=Carbon Monoxide CO₂=Carbon Dioxide

50% HCNG F150 Emissions Testing

Modifications


- SVO heads, exhaust intercooler and supercharger
- Exhaust gas recirculator and ignition modification
- Equipped with 3 Quantum hydrogen 3,600 psi tanks with 3 kg total storage

Percent reduction in emissions (HCNG versus gasoline-fueled F-150)

нс	СО	NO _X	CO ₂
-3.5%	-43.3%	-97.0%	-16.7%

HC = total hydrocarbons CO = carbon monoxide CO₂ = carbon dioxide NOx = oxides of nitrogen

HCNG ICE Vehicle Testing

- APS meter reader fleet 12 Bifuel vehicles (GM)
 - 1,600 fueling events, 190,000 miles using 10,600 GGE of 15% HCNG
- Public Fleet private party Bifuel conversions
 - 350 fueling events, 36,000 miles (estimated) using 1,800 GGE of HCNG blends (mostly 15%)

5.4L 16-valve 100% Hydrogen ICE Vehicle

- 5.4L V-8, 100% hydrogen 16-valve Ford/ETEC pickup
- 5 speed transmission, supercharged (3 psi boost), hydrogen fuel injectors, and air-to-water intercooler
- Hardened valves and seats, and forged pistons with 12:1 compression
- Motec fuel and spark controls, lean-burn mode

 Onboard hydrogen storage 3 Dynetek tanks @ 3,000 psi, 6.5 kilograms, aluminum vessel and fiberglass

wrap

- Converted by ETEC
- 1,365 lbs payload

5.4L 16-valve 100% Hydrogen ICE Vehicle

- Baseline Performance testing results
 - Maximum speed @ 1 mile: 81 mph and ¼ mile: 58 mph
 - Acceleration (0 to 50 mph): 18.1 seconds
 - SAE J1634 fuel economy (AC on): 14.5 miles/GGE
 - SAE J1634 fuel economy (AC off): 18.0 miles/GGE
 - 45 mph constant speed fuel economy: 27.0 miles/GGE
 - Range 95 (14.5 miles/GGE) to 175 miles (27 miles/GGE)
- Fleet testing 3,500 miles: 17.0 miles/GGE (110 miles range)

5.4L 32-valve 100% Hydrogen ICE Vehicle

- 5.4L V-8, 100% hydrogen 32-valve Ford/ETEC pickup
- Automatic transmission, hydrogen fuel injectors, 12 pounds supercharger boost and air-to-air intercooler
- Hardened valves and seats, and forged pistons with 11.5:1 compression
- Motec fuel and spark controls, lean-burn mode
- 7,500 fleet testing miles 15.3 miles/GGE
- Onboard hydrogen storage 3 Dynetek tanks @ 5,000 psi, 15.3 kilograms (230 miles range)
- To be baseline performance tested
- Converted by ETEC

6L V-8 100% Hydrogen ICE Vehicle

- Base vehicle: Chevrolet 1500HD crew cab (4 door) with 6L V8 CNG engine
- Converted by ETEC/Roush to operate on 100% hydrogen
- 4-speed automatic transmission, electronic port fuel injection, supercharger, liquid-to-air intercooler
- Integration of powertrain control module and development of hydrogen lean-burn control strategies
- Implementation of J1850 communications to maintain seamless integration with existing OEM equipment

6L V-8 100% Hydrogen ICE Vehicle – cont'd

- 10.5 kg 100% hydrogen storage onboard @ 5,000 psi
- 180 Horsepower and 260 lb-ft torque
- Anticipated 15 miles per GGE and range 155 miles
- Targeted to meet NOx requirements for 2007 Tier II, Bin 7 standards
- HC < 10 ppm and NOx < 25 ppm on engine dynamometer
- Nine vehicles are being produced in 1st production run
- AVTA to baseline performance test and track 8 unit fleet in Vancouver

Acknowledgement

This work is supported by DOE's FreedomCAR and Vehicle Technologies Program

Vehicle Systems Team Leader, Tien Duong Project Leader and VSATT Lead, Lee Slezak

http://avt.inl.gov