U.S. Department of Energy -FreedomCAR & Vehicle Technologies Program (Advanced Vehicle Testing Activity)

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

James Francfort

National Hydrogen Association Conference March 2005

Presentation Outline

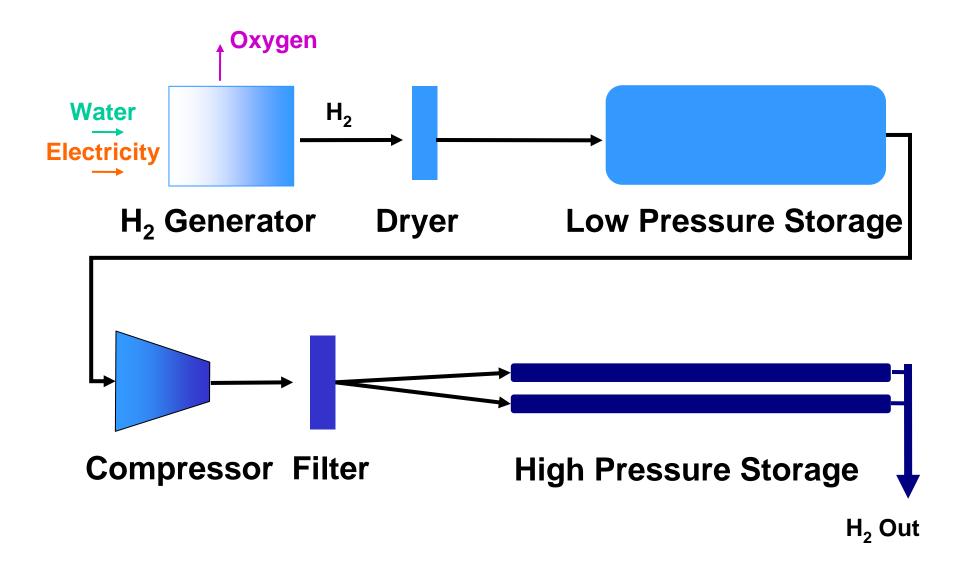
- Background and Goal
- Testing partners
- Alternative Fuel Pilot Plant design & operations
- Fuel dispensing
- Prototype dispenser testing
- Hydrogen internal combustion engine (ICE) vehicle testing activities
- Gen II station design
- Contact information & obtaining reports

Advanced Vehicle Testing Activity (AVTA)-Background

- AVTA is part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program
- AVTA Goal Benchmark & validate the performance of light-, medium-, & heavy-duty vehicles that feature one or more advanced technologies, including:
 - ICE's burning advanced fuels, such as 100%
 hydrogen & hydrogen/CNG-blended (H/CNG) fuels
 - Hybrid electric, pure electric, & hydraulic drive systems

APS Alternative Fuel (Alt-Fuel) Pilot Plant & Vehicle Testing - Partners

- Arizona Public Service (APS)
- Electric Transportation Applications (ETA)
- DOE's Advanced Vehicle Testing Activity (AVTA)
- Idaho National Laboratory (INL) manages, analyzes, and disseminations these AVTA testing activities and results



APS Alt-Fuel Pilot Plant & Vehicle Testing -Objectives

- Evaluate the safety & reliability of operating ICE vehicles on hydrogen & H/CNG blended fuels
- Evaluate hydrogen fueling infrastructure costs
- Quantify hydrogen & H/CNG ICE vehicle costs, performance, & emissions

APS Alt-Fuel Pilot Plant - Hydrogen System

APS Alt-Fuel Pilot Plant – Hydrogen System

- Proton Energy Systems' HOGEN PEM stationary fuel cell operating in reverse
 - 300 scfh hydrogen output @ 150 psi
 - 17 kWh per 100 scf hydrogen
- Hydrogen Lectrodryer
 - 300 scfh
 - -80°F dew point

APS Alt-Fuel Pilot Plant – Hydrogen System

- Hydrogen compressor
 - Pressure Dynamic Consultants (Pdc Machines)
 - Oil-free triple diaphragm
 - Two-stage compression
 - 300 scfh @ 6,100 psi
- Norman hydrogen filter locations
 - High- & low-pressure storage outlets
 - Dryer inlet & outlet
 - Compressor outlets
- Hydrogen 99.9997% purity

APS Alt-Fuel Pilot Plant - Hydrogen System

- Low pressure hydrogen storage (lower tank)
- High pressure hydrogen storage (upper 2 tanks)

Low Pressure Hydrogen Storage Tank

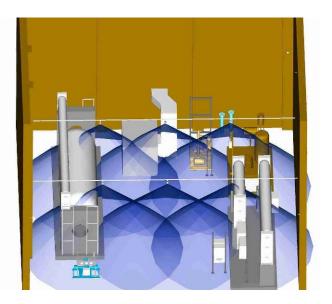
- 8,955 scf @ 150 psi
- Rated for 250 psi @ 125°F
- Carbon steel, 6 ft. 11 in. inside diameter, 19 ft. long
- Water volume of 6,565 gal.
- Manufactured by Trinity Industries under ASME Pressure Vessel Code
- ASME safety relief valve rated @ 165 psi piped to vent stack

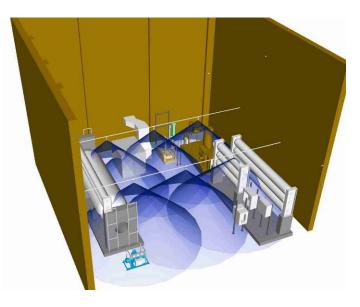
High Pressure Hydrogen Storage Tanks

- 17,386 scf @ 6,000 psi (total both tanks)
- Rated for 6,667 psi @ 200°F
- Seamless horizontal carbon steel, 16 in. outside diameter, 28 ft. long
- Water volume of 405 gal. (total both tanks)
- Manufactured by CP Industries under 1998 ASME Pressure Vessel Code
- ASME safety relief valve rated @ 6,667 psi piped to vent stack

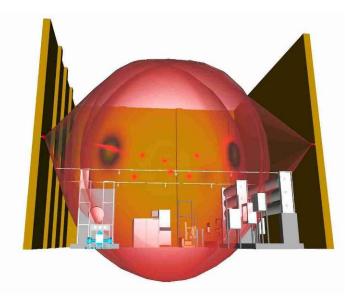
APS Alt-Fuel Pilot Plant - Auxiliary Systems

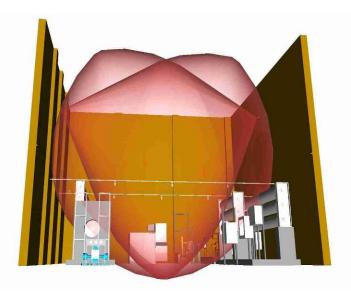
- Water Purification 215 gal/day, 1.0 micron exit filter
- Control Air 100 cfm compressor, 90 psi
- Chiller 293,000 Btu/h,
- Nitrogen Air/hydrogen buffer gas production, piping, compression & 600 scf storage. 97% purity @ 100 psi
- Helium vent stack purging
- Vents fabricated from 0.5 in. 304 stainless steel tubing, 3 in. schedule 40 stainless steel pipe


APS Alt-Fuel Pilot Plant - Emergency Shutdown System (EMS)

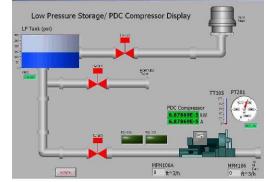

- Ultra-fast IR/UV detectors
- Combustible gas detectors
- Manual (5) & remote trips
- Vent stack temperature monitor
- Alarms horns and strobe lights
- Vent stack fire suppression

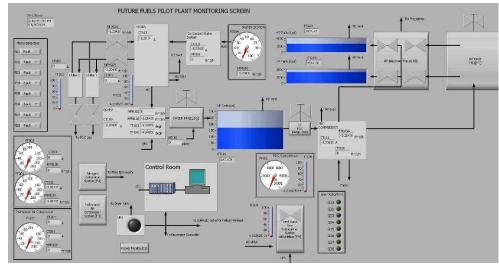
APS Alt-Fuel Pilot Plant - EMS

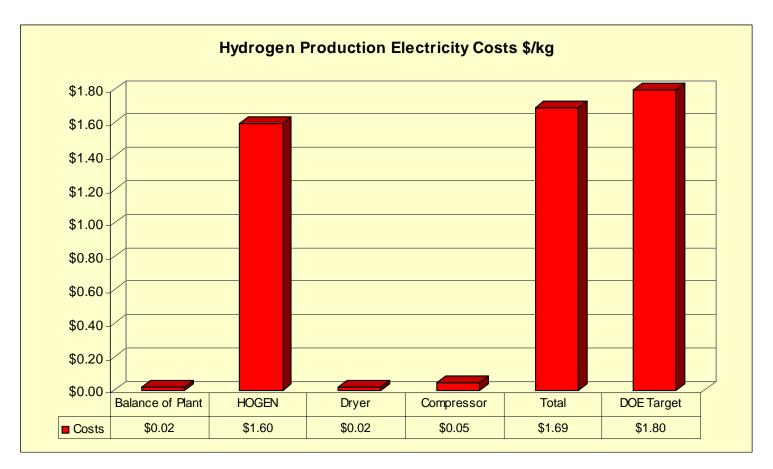

- Six combustible gas detectors (Det-Tronics RS 8471)
- Monitors hydrogen & natural gas in 1% increments of lower flammability limits (LFL)
- Alarm condition at 25% of LFL reached
- Emergency shutdown when 50% of LFL reached



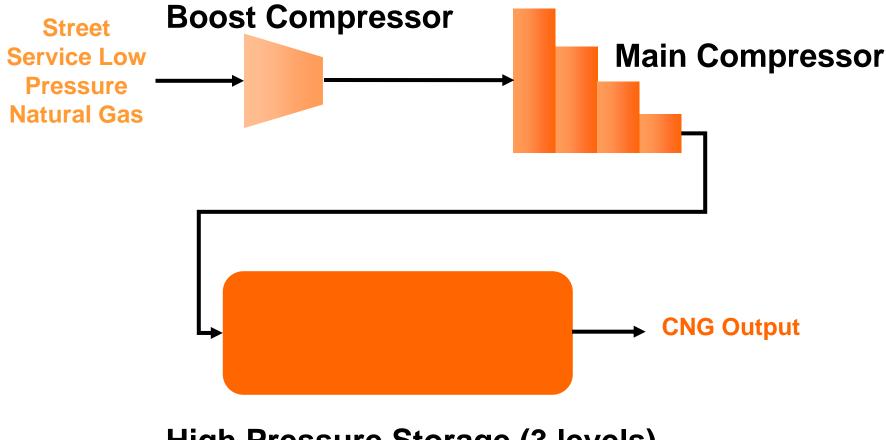
APS Alt-Fuel Pilot Plant - EMS


- Two mid-level (35 feet) & four corner IR/UV flame detectors (Spectrex 20/20LB units)
- One detector at fuel dispenser unit
- If flame detected, emergency shutdown initiated within 3 milliseconds




APS Alt-Fuel Pilot Plant - Monitoring System

- Real-time station & component monitoring @ 50 monitoring nodes (100 @ completion)
- Fuel quantities collected and costs calculated for pure hydrogen and H/CNG blended fuels
- Electric powered equipment
 - Voltages & currents
- Select process temperatures
- Major process parameters
 - Pressures & flows



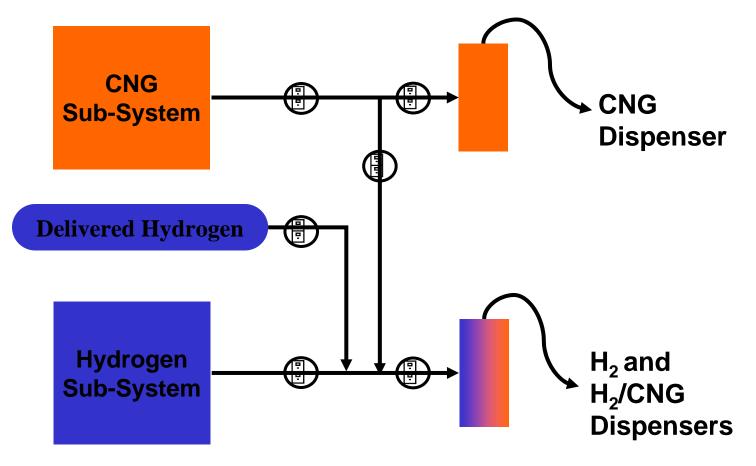
APS Alt-Fuel Pilot Plant – Monitoring System

DOE 2005 Electricity Target (\$1.80) for a refueling station producing 250 kg/day. APS Hydrogen Production Electricity Cost based on APS published commercial/industry rate of \$0.02/kWh for 5 MW & larger.

APS Alt-Fuel Pilot Plant - CNG System

High Pressure Storage (3 levels)

APS Alt-Fuel Pilot Plant - CNG System


- CNG Boost Compressor
 - 300 scfm @ 60 psi
- CNG Main Compressor
 - 350 scfm @ 5,000 psi
- CNG Storage/Pressure 6 tanks
 - 3 Low: 11,079 scf @ 3,600 psi
 - 2 Medium 5,711 scf @ 4,500 psi
 - 1 High: 5,711 scf @ 5,000 psi
 - Manufacturer: CP Industries

APS Alt-Fuel Pilot Plant – Dispenser System

APS Alt-Fuel Pilot Plant - Fueling Dispensers

- Includes metering & electronic billing Interface
- Fully permitted for motor fuel dispensing
- Public access

Prototype Dispenser Testing

- Uses proportional flow control valves for hydrogen & CNG gas streams to control gas flow rates from 100 to 40,000 scfh
- Dispenser controller adjusts the control valves to provide real-time ratio control of blended fuels
- Control valves are trimmed by a digital dispenser controller using mass flow signals provided by coriolis mass flow transducers in the hydrogen & CNG gas streams

Prototype Dispenser Testing

- Delivers 100% hydrogen, 100% CNG, & blends of H/CNG using two independent single nozzles to AVTA test vehicles
- 1 Nozzle CNG and H/CNG fuels (15, 20, 30, & 50% hydrogen by volume) at 3,600 psi
- 1 Nozzle 100% hydrogen dispensing at 5,000 psig
- Next step commercial package

Hydrogen & H/CNG ICE Vehicle Testing

- Initial ICE hydrogen & H/CNG vehicle testing
 - Ford F150 up to 30% H/CNG (continues in testing)
 - Ford F150 up to 50% H/CNG (testing complete)
 - 100% hydrogen Mercedes Benz van (operating)
 - Dodge van on 15% H/CNG (continues in testing)

Hydrogen/CNG ICE Vehicle Testing

- Ongoing hydrogen & H/CNG ICE vehicle testing
 - 8 APS fleet vehicles on 15% H/CNG S-10s, Sierra pickups, Blazers, Dodge Ram van
 - 16+ City of Phoenix (including Phoenix Fire Department) fleet vehicles on 15% H/CNG

Hydrogen/CNG ICE Vehicle Testing

- 100% hydrogen ICE vehicle Baseline Performance and Fleet testing
 - Ford F150 100% hydrogen, 5.4 liter 16 valve
 - Ford F150 100% hydrogen, 5.4 liter, 32 valve
 - Adding another V-8 pickup
- 250,000+ hydrogen & H/CNG test miles, 3,000+ successful fueling events

5.4L 16-valve Hydrogen ICE Vehicle Testing

- Ford 16-valve 5.4L SOHC V-8, 100% hydrogen, fuel injected, supercharged, & 1,365 lbs payload
- Converted by Electric Transportation Engineering Corporation (eTec)
- Onboard hydrogen storage
 - 3 Dynetek tanks
 - Aluminum inner vessel, fiberglass wrap
 - 3,000 psi
 - 6.5 kilograms

5.4L 16-valve Hydrogen ICE Vehicle Testing

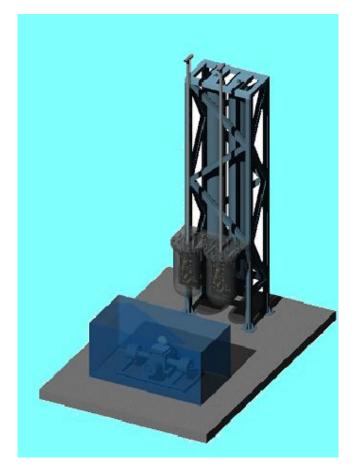
- Baseline Performance testing results
 - Maximum speed @ 1 mile: 81 mph & 1/4 mile: 58 mph
 - Acceleration (0 to 50 mph): 18.1 seconds
 - SAE J1634 fuel economy (AC on): 14.5 miles/GGE
 - SAE J1634 fuel economy (AC off): 18.0 miles/GGE
 - 45 mph constant speed fuel economy: 27.0 miles/GGE
 - Range 95 to 175 miles (6.5 GGE storage)
- Started Fleet testing
 - 2,800 miles: 17.2 miles/GGE

5.4L 32-Valve 100% Hydrogen ICE - Status

- Engine changed to 10.5 to 1 compression, 12 pounds supercharge boost
- To be Baseline Performance and Fleet tested
- Fuel storage
 - 3 Dynetek tanks
 - Aluminum inner vessel, carbon wrap
 - 5,000 psi tanks
 - 15 kilograms

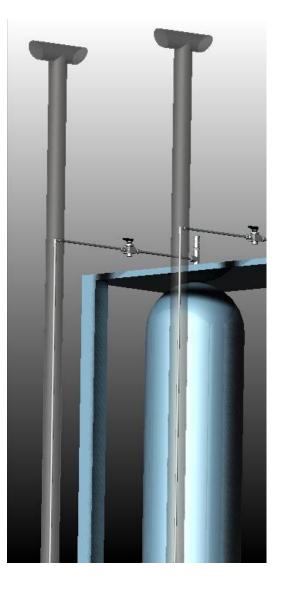
30% H/CNG F150 Performance Testing

Fuel Blend	Acceleration to 60 mph (secs.)	Fuel Economy (miles/gge)	Range (miles)
CNG	10.10	23.3	122
15% H/CNG	10.97	22.6	110
30% H/CNG	12.68	23.5	102



Generation II Station Design

- Driven by commercial fueling station design requirements
 - Reduced setbacks to allow siting on a commercial corner
 - Reduced operator training to allow operation by service station personnel or vehicle operators
 - Reduced hazards to minimize the maximum potential accident
 - Multiple layers of safety to significantly reduce operating risk


Generation II Station Design

- Coaxial Containment System[™]
- Expandable modular design
- Envelopes most severe environmental conditions
- Exhaustive safety analysis to support permitting
- Zero setback requirements for flexible siting
- Shop assembled skid design
 - Assembly by ASME shop
 - Field welding minimized

Generation II Station Design - Coaxial Containment System™

- Double wall piping system
 - Shields process piping within a pressure containing pipe
 - Contains pressure waves resulting from any gas ignitions
 - Redirects any detonations to benign location
 - Allows inerting of annulus to prevent gas ignition
 - Eliminates need for blast setback
 - Protects process pipe from vandalism

The hydrogen station, vehicle testing, and prototype dispenser testing reports; this presentation; and the online Alternative Fuel (Hydrogen) Pilot Plant monitoring system are available via:

http://avt.inl.gov

Presenter contact: james.francfort@inl.gov

INEEL/CON-04-02198