U.S. Department of Energy
FreedomCAR & Vehicle
Technologies Program

Advanced Vehicle Testing
Activity – Hydrogen Pilot Plant
and H2-ICE Vehicle Activities

Jim Francfort
Idaho State University
November 2006
Presentation Outline

• Background & Goal
• Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design & operations
 – Hydrogen subsystem
 – CNG subsystem
 – Auxiliary & Safety systems
• Fuel Dispensing
• Hydrogen & HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities
• Gen II station
• Barriers & Applications
• WWW Information
AVTA Background & Goal

- Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program

- These activities are managed by the Idaho National Laboratory (INL also performs data analysis and reporting activities)

- AVTA Goal - Provide benchmark data for technology modeling, and research and development programs, and help fleet managers and other vehicle purchasers make informed purchase and operations decisions
AVTA Background

- Full-size pure EVs (40 models, 5 million miles)
- Neighborhood EVs (15 models)
- Urban EVs (3 models, 1.75 million test miles)
- Hybrid EVs (12 models, 35 HEVs, 2.2 million miles)
- Plugin HEVs (starting with 3 models)
- Hydrogen ICE vehicles (several models, 300k miles)
- Electric ground support (aircraft) equipment
- Oil bypass filter testing (17 INL units, 1.3 million miles)
APS Alternative Fuel (Hydrogen) Pilot Plant

- Partners - Arizona Public Service (APS), Electric Transportation Applications (ETA), INL, & DOE
- First & longest operating hydrogen station in the U.S. – since June 2002
- Hydrogen produced onsite
- Hydrogen & CNG fueling
Hydrogen Testing Objectives

- Evaluate the safety & reliability of operating ICE vehicles on 100% hydrogen & hydrogen/compressed natural gas (H/CNG) blended fuels (15 to 50% H/CNG)
- Evaluate hydrogen fueling infrastructure & operations costs
- Quantify hydrogen & H/CNG ICE vehicle costs, performance, & emissions
Pilot Plant - Layout

Hydrogen Fuel Cell

2 H2 High psi tanks

H2 Low psi tank

H2 Compressor

2 CNG Compressors

6 CNG Tanks (3 psi levels)
Pilot Plant - Hydrogen Subsystem

- Oxygen
- Water
- Electricity

H₂ Generator → Dryer → Low Pressure Storage

Compressor → Filter → High Pressure Storage

H₂ Out
Pilot Plant – Hydrogen Subsystem

• Proton Energy Systems’ HOGEN PEM stationary fuel cell operating in reverse
 – PEM fuel cell, 57 kW, 20 cells
 – 300 scfh hydrogen output @ 150 psi
 – 17 kWh per 100 scf hydrogen

• Hydrogen Lectrodryer
 – 300 scfh
 – -80°F dew point
Pilot Plant – Hydrogen Subsystem

- Hydrogen compressor
 - Pressure Dynamic Consultants (Pdc Machines)
 - Oil-free triple diaphragm
 - Two-stage compression
 - 300 scfh @ 6,000 psi

- Norman hydrogen filters
 - High- & low-pressure storage outlets
 - Dryer inlet & outlet
 - Compressor outlets

- Hydrogen - 99.9997% purity
Pilot Plant - Hydrogen Subsystem

- Low pressure hydrogen storage (lower tank)
- High pressure hydrogen storage (upper 2 tanks)
Low Pressure Hydrogen Storage Tank

- 8,955 SCF @ 150 psi
- Rated for 250 psi at 125°F
- Carbon steel, 6 ft. 11 in. inside diameter, 19 ft. long
- Water volume of 6,565 gallons
- Manufactured under ASME Pressure Vessel Code, Section VIII, Division 22
- ASME safety relief valve rated at 165°F piped to vent stack
High Pressure Hydrogen Storage Tanks

- 17,386 SCF @ 6,000 psi (total both tanks)
- Rated for 6,667 psi at 200°F
- Seamless horizontal carbon steel, 16 in. outside diameter, 28 ft. long
- Water volume of 405 gal. (total both tanks)
- Manufactured under 1998 ASME Pressure Vessel Code, Section VIII, Division 1, Addendum 1999, Appendix 22 (SF3)
- ASME safety relief valve rated at 6,667°F piped to vent stack
Pilot Plant - CNG Subsystem

- **CNG Boost Compressor**
 - 300 scfm @ 60 psi

- **CNG Main Compressor**
 - 350 scfm @ 5,000 psi

- **CNG Storage/Pressure – 6 tanks**
 - 3 Low: 11,079 scf @ 3,600 psi
 - 2 Medium: 5,711 scf @ 4,500 psi
 - 1 High: 5,711 scf @ 5,000 psi

- Manufacturer: CP Industries
Pilot Plant - Auxiliary Systems

- Water Purification - 215 gal/day, 1.0 micron exit filter
- Control Air - 100 cfm compressor, 90 psi
- Water Chiller - 293,000 Btu/h,
- Nitrogen - Air/hydrogen buffer gas - production, piping, compression & 600 scf storage. 97% purity @ 100 psi
- Helium - vent stack purging
- Vents - fabricated from 0.5 in. 304 stainless steel tubing, 3 in. schedule 40 stainless steel pipe
Pilot Plant - Emergency Shutdown System

- Combustible gas detectors
- Ultra-fast IR/UV flame detectors
- Manual (5) & remote trips
- Vent stack temperature monitor
- Alarms, horns & strobe lights
- Vent stack fire suppression
Pilot Plant – Hydrogen Gas Detectors

- Six combustible gas detectors (Det-Tronics RS 8471)
- Monitors hydrogen & natural gas in 1% increments of lower flammability limits (LFL)
- Alarm condition at 25% of LFL reached
- Emergency shutdown when 50% of LFL reached
Pilot Plant – Flame Detectors

• Two mid-level (35 feet) & four corner IR/UV flame detectors (Spectrex 20/20LB units)
• One detector at fuel dispenser unit
• If flame detected, emergency shutdown initiated within 3 milliseconds
Pilot Plant - Monitoring

- Real-time station & component monitoring at 100 nodes
- Fuel quantities & costs collected for pure hydrogen and HCNG blended fuels
- Electric power equipment
 - Voltages & currents
- Select process temperatures
- Major process parameters
 - Pressures & flows
Pilot Plant - Monitoring

- Hydrogen kilogram (kg) energy costs based on historical (26% to 49%) & projected (70%) plant factors
 - $3.43 down (26% PF) to $2.39 per kg (70% PF)
 - DOE 2005 energy cost target $2.47
- Water cost per kg of hydrogen $0.10
- 8,600 kg of hydrogen produced (6/30/06)
Pilot Plant – Dispenser System

- CNG Sub-System
- Delivered Hydrogen
- Hydrogen Sub-System
- H₂ and H₂/CNG Dispensers
Pilot Plant - Fueling Dispensers

- Includes metering & electronic billing interface
- Fully permitted for motor fuel dispensing
- Public access
- 11,295 fueling events (6/30/06)
 - 545 @ 100% Hydrogen
 - 3,940 @ 15 to 50% HCNG blends
 - 6,810 @ 100% CNG
Prototype Dispenser Testing

- Uses proportional flow control valves for hydrogen & CNG gas streams from 100 to 40,000 scfh
- Real-time ratio control of blended fuels - uses coriolis mass flow transducers in hydrogen & CNG gas streams
- 1 Nozzle - CNG & HCNG fuels (15, 20, 30, & 50% hydrogen by volume) at 3,600 psi
- 1 Nozzle - 100% hydrogen at 5,000 psi
- Being commercialized by Clean Energy
Hydrogen & HCNG ICE Vehicle Testing

- Initial ICE hydrogen & HCNG vehicle testing
 - Dodge van on 15% HCNG (operating)
 - Ford F150 up to 30% HCNG (operating)
 - Ford F150 up to 50% HCNG (testing complete)
 - 100% hydrogen Mercedes Benz van (operating)
- Total of 300,000 hydrogen & HCNG miles
15% HCNG Dodge Van Emissions Testing

• 5.2 L CNG V8 (no modifications) with 71,000 HCNG test miles - no problems
• 27,000 miles of 15% HCNG fuel data - 15.5 miles/GGE

<table>
<thead>
<tr>
<th>Percentage change in 15% HCNG emissions compared to 100% CNG emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hydrocarbons</td>
</tr>
<tr>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>Oxides of nitrogen</td>
</tr>
<tr>
<td>Carbon dioxide</td>
</tr>
</tbody>
</table>
30% HCNG F150 Testing

- 5.4 L V8 CNG engine – added: supercharger, ignition modifications & exhaust gas recirculator

- Fleet testing - 59,000 30% HCNG miles: 17.3 miles/GGE

<table>
<thead>
<tr>
<th>Fuel Blend</th>
<th>0 to 60 mph (secs.)</th>
<th>Miles/GGE</th>
<th>Range (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNG</td>
<td>10.10</td>
<td>23.3</td>
<td>122</td>
</tr>
<tr>
<td>15% HCNG</td>
<td>10.97</td>
<td>22.6</td>
<td>110</td>
</tr>
<tr>
<td>30% HCNG</td>
<td>12.68</td>
<td>23.5</td>
<td>102</td>
</tr>
</tbody>
</table>
30% HCNG F150 Emissions Testing

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Percentage Change in Emissions Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NMHC</td>
</tr>
<tr>
<td>Gasoline</td>
<td>Base</td>
</tr>
<tr>
<td>CNG</td>
<td>-80</td>
</tr>
<tr>
<td>15% HCNG</td>
<td>-78</td>
</tr>
<tr>
<td>30% HCNG</td>
<td>-89</td>
</tr>
</tbody>
</table>

NMHC = Non-Methane Hydrocarbons
CH₄ = Methane
HC = Total Hydrocarbons
CO = Carbon Monoxide
NO_x = Oxides of Nitrogen
CO₂ = Carbon Dioxide
50% HCNG F150 Emissions Testing

- Modifications
 - SVO heads, exhaust intercooler & supercharger
 - Exhaust gas recirculator & ignition modification
 - Equipped with 3 Quantum hydrogen 3,600 psi tanks with 9 kg total storage

Percent reduction in emissions (HCNG versus gasoline-fueled F-150)

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>CO</th>
<th>NO\textsubscript{x}</th>
<th>CO\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-3.5%</td>
<td>-43.3%</td>
<td>-97.0%</td>
<td>-16.7%</td>
</tr>
</tbody>
</table>

HC = total hydrocarbons
CO = carbon monoxide
CO\textsubscript{2} = carbon dioxide
NO\textsubscript{x} = oxides of nitrogen
HCNG ICE Vehicle Fleet Operations

• APS meter reader fleet 12 Bifuel vehicles (GM)
 – 1,600 fueling events, 190,000 miles using 10,600 GGE of 15% HCNG

• Public Fleet - private party Bifuel conversions
 – 350 fueling events, 36,000 miles (estimated) using 1,800 GGE of HCNG blends (mostly 15%)
5.4L 16-valve 100% Hydrogen ICE Vehicle

- 5.4L V-8, 100% hydrogen 16-valve Ford/ETEC pickup
- 5 speed transmission, supercharged (3 psi boost), hydrogen fuel injectors, & air-to-water intercooler
- Hardened valves & seats, & forged pistons with 12:1 compression
- Motec fuel & spark controls, lean-burn mode
- Onboard hydrogen storage 3 Dynetek tanks @ 3,000 psi, 6.5 kg, aluminum vessel & fiberglass wrap
- Converted by ETEC
- 1,365 lbs payload
5.4L 16-valve 100% Hydrogen ICE Vehicle

- Baseline Performance testing results
 - Max speed @ 1 mile: 81 mph & ¼ mile: 58 mph
 - Acceleration (0 to 50 mph): 18.1 seconds
 - SAE J1634 fuel economy (AC on): 14.5 miles/GGE
 - SAE J1634 fuel economy (AC off): 18.0 miles/GGE
 - 45 mph constant speed: 27.0 miles/GGE
 - Range 95 (14.5 miles/GGE) to 175 miles (27 miles/GGE)

- Fleet testing – 5,200 miles: 17.4 miles/GGE (110 miles range)
5.4L 32-valve 100% Hydrogen ICE Vehicle

- 5.4L V-8, 100% hydrogen 32-valve Ford/ETEC pickup
- Automatic transmission, hydrogen fuel injectors, 12 pounds supercharger boost & air-to-air intercooler
- Hardened valves & seats, & forged pistons with 11.5:1 compression
- Motec fuel & spark controls, lean-burn mode
- 8,000 fleet testing miles - 14.4 miles/GGE
- Onboard hydrogen storage 3 Dynetek tanks @ 5,000 psi, 15.3 kg (220 miles range)
- Converted by ETEC
6L V-8 100% Hydrogen ICE Vehicle

- Base vehicle: Chevrolet 1500HD crew cab (4 door) with 6L V8 CNG engine
- Converted by ETEC/Roush to 100% hydrogen
- 4-speed automatic transmission, electronic port fuel injection, supercharger, liquid-to-air intercooler
- Integration of powertrain control module & development of hydrogen lean-burn control strategies
- Implementation of J1850 communications to maintain seamless integration with existing OEM equipment
6L V-8 100% Hydrogen ICE Vehicle

- 10.5 kg 100% hydrogen storage onboard @ 5,000 psi
- 200 Horsepower & 260 lb-ft torque
- Preliminary Argonne dynamometer results
 - 14 city & 20 highway miles per GGE
 - Range 140 to 200 miles
 - THC 0.0005 g/mi, NOx 0.0610 g/mi, CO 0.0685 g/mi, & CO₂ 0.0926 g/mi
- Nine vehicles produced
- 8 units in Vancouver B.C.
Generation II Station Design

- Driven by commercial fueling station design requirements
 - Reduced setbacks to allow siting on a commercial corner
 - Reduced operator training to allow operation by service station personnel or vehicle operators
 - Reduced hazards to minimize the maximum potential accident
 - Multiple layers of safety to significantly reduce operating risk
Generation II Station Design

- Coaxial Containment System™
- Expandable modular design
- Envelopes most severe environmental conditions
- Exhaustive safety analysis to support permitting
- Zero setback requirements for flexible siting
- Shop assembled skid design
 - Assembly by ASME shop
 - Field welding minimized
Generation II Station Design - Coaxial Containment System™

- Double wall piping system
 - Shields process piping within a pressure containing pipe
 - Contains pressure waves resulting from any gas ignitions
 - Redirects any detonations to benign location
 - Allows inerting of annulus to prevent gas ignition
 - Eliminates need for blast setback
 - Protects process pipe from vandalism
Status of Fuel Cell Vehicles

• U.S. public use totals 1 FCV (cost between $1 million and $1.5 million)
• About 60 FCVs in DOE/OEM/Oil demo fleets
• Oil companies largest 5 producers of hydrogen – 68% of capacity
Institutional & Economic Barriers

- No intentional institutional barriers (yet) - we’re burning cooking oils in cars
 - Lack of codes & standards
 - Lack of national ICE vehicle certification process
 - Lack of state emissions testing procedures
 - Lack of familiarity (Hindenburg affect?)
Institutional & Economic Barriers

• All economic barriers
 – Hydrogen has to compete economically with gasoline
 – Hydrogen & fuel cell economics very expensive
 – Hogen unit cost more than doubled in 6 years
 – Tube trailer $12.50 kg + transportation & trailer rental
 – Michigan testing ~$80 kg., Chicago testing ~$50 kg., & Phoenix station ~$12 kg.
Hydrogen Needs High Value Applications

- Is hydrogen a chemical (remote production locations) or an energy carrier for transportation (corner “gas” stations)?
- Avoid emissions & greenhouse gas restrictions
- Economic benefits of on-peak electricity production at substations
- Onsite hydrogen generation at power plants for generator cooling - avoid transportation (to remote plant locations) & security issues
- Avoid Katrina shortages
Acknowledgement

This work is supported by DOE’s FreedomCAR and Vehicle Technologies Program
Vehicle Systems Team Leader, Tien Duong
Project Leader and VSATT Lead, Lee Slezak

Additional Information
http://avt.inl.gov