## 2014 Tesla Model S 85 kWh

 Advanced Vehicle Testing - Baseline Vehicle Testing Results

| VEHICLE SPECIFICATIONS ${ }^{1}$ |  |  |
| :---: | :---: | :---: |
| Vehicle Features <br> VIN: 5YJSA1H14EFP34500 <br> EPA Class: Large Car <br> Seatbelt Positions: 5 <br> Type: BEV <br> CARB Credit ${ }^{2}$ : Type III ZEV <br> EPA Fuel Economy: <br> 94 MPGe (City) <br> 97 MPGe (Highway) <br> 95 MPGe (Combined) <br> EPA Range: 265 miles <br> On-board Charger: 10 kW <br> Electric Motor <br> Type: AC Synchronous <br> Maximum Power: 270 kW <br> Maximum Torque: 440 Nm <br> Transmission <br> Type: Single Speed <br> Layout: Rear Wheel Drive <br> Gear Ratio: 9.73:1 | Battery <br> Manufacturer: Tesla Motors <br> Chemistry: Lithium-ion <br> Cathode Material: Nickel-Cobalt- <br> Aluminum <br> Cell Type: 18650 <br> Number of Cells/Modules: <br> 7,104 cells/16 modules <br> Cell Configuration: 6 Cells in Series, 74 in Parallel per Module <br> Rated Pack Energy: 85 kWh <br> Pack Weight: 545 kg <br> Pack Specific Energy: $156 \mathrm{~Wh} / \mathrm{kg}$ <br> Pack Location: Between front and rear wheels, below passenger compartment Thermal Management: Active, LiquidCooled | Weights <br> Design Curb Weight: 4,647 lb <br> Delivered Curb Weight: 4,514 lb <br> Distribution F/R: 48\%/52\% <br> GVWR: 5,710 lb <br> GAWR F/R: 2,813 lb/3,307 lb <br> Max. Payload: 1,080 lb <br> Dimensions <br> Wheelbase: 116.5 in <br> Track F/R: 65.4 in/66.9 in <br> Length/Width: 196.0 in/86.2 in <br> Height: 56.5 in <br> Tires <br> Manufacturer: Michelin <br> Model: Primacy MXM4 <br> Size: 245/45R19 <br> Pressure F/R: 45 psi/45 psi Spare Installed: N/A - Tire sealant and inflator |
| NOTES: <br> 1. Vehicle specifications were supplied by the manufacturer, measured, or derived from a literature review. <br> 2. The vehicle was classified as a Type III ZEV by the California Air Resources Board (CARB). |  |  |

## PERFORMANCE STATISTICS ${ }^{1}$

## TRACK TESTING ${ }^{2}$



CONSTANT-SPEED RANGE AND CHARGE TESTING IN CHARGE-DEPLETING MODE ${ }^{1}$

|  | 45 mph Test ${ }^{2}$ | $60 \mathrm{mph} \mathrm{Test}{ }^{3}$ | 70 mph Test ${ }^{4}$ |
| :---: | :---: | :---: | :---: |
| Average DC power out of battery at speed (kW): | 8.7 | 14.8 | 21.0 |
| (A) DC energy out of battery at set speed (kWh $)^{5,7,9}$ : | 70.6 | 68.7 | 68.6 |
| $\left(\mathbf{A + )}\right.$ Total DC energy out of battery (kWh) ${ }^{5,7,9}$ : | 71.8 | 69.9 | 69.8 |
| Battery capacity discharge at set speed (Ah): | 201.6 | 197.4 | 198.2 |
| (B) $\quad$ Range at set speed (mi) ${ }^{6,8,10}$ : | 366.4 | 280.3 | 228.1 |
| (C) Post-test charge AC energy from EVSE @ 240 V to onboard charger (kWh): | 80.0 | 79.0 | 78.8 |
| (D) Post-test charge DC energy into battery from onboard charger (kWh): | 72.4 | 71.5 | 71.9 |
| Post-test charge duration (HH:MM): | 11:13 | 11:02 | 10:59 |
| AC electricity consumption rate ( $\mathrm{Wh} / \mathrm{mi})^{11}$ : | 215 | 277 | 340 |
| DC electricity consumption rate ( $\mathrm{Wh} / \mathrm{mi})^{12}$ : | 193 | 245 | 301 |
| (A+/D) Battery Roundtrip Efficiency ${ }^{13}$ : | 99\% | 98\% | 97\% |
| (D/C) On-Board Charger Efficiency ${ }^{14}$ : | 91\% | 91\% | 91\% |
| $(\mathrm{A}+/ \mathbf{C})$ Overall Trip Efficiency ${ }^{15}$ : | 90\% | 88\% | 89\% |

NOTES:
 with such a large range continuously, periodic driver exchanges were performed; additional ESS energy throughput was minimized as much as possible. Range is considered reached when the vehicle is no longer capable of maintaining a speed that is 2 mph lower than the set speed. Battery temperature data were not captured for this vehicle.
2. During the 45 mph range test, the average ambient temperature was $31^{\circ} \mathrm{C}$. During the post-test charge, the average ambient temperature was $31^{\circ} \mathrm{C}$.
3. During the 60 mph range test, the average ambient temperature was $33^{\circ} \mathrm{C}$. During the post-test charge, the average ambient temperature was $33^{\circ} \mathrm{C}$.
4. During the 70 mph range test, the average ambient temperature was $27^{\circ} \mathrm{C}$. During the post-test charge, the average ambient temperature was $30{ }^{\circ} \mathrm{C}$.
 is achieved and maintained. After the range at 45 mph was completed, there is ESS energy throughput during the drive to return the vehicle to the test prep area and the EVSE unit for the post-test charge. The pre-test drive required 0.49 kWh , the driver exchanges when the vehicle slowed to zero then returned to speed required 0.73 kWh , while the post-test drive required 0.002 kWh . These energy inputs can be added to the energy consumed during the range test ( $\mathbf{A}$ ) to obtain the total output from the battery ( 71.8 kWh , denoted as ( $\mathbf{A}+$ ) ) that is used in the calculations discussed in Notes 13 and 15.
6. In addition to the range measured for the 45 mph test, the pre-test drive required 1.23 miles from the test prep area to the point at which the vehicle test speed is achieved and maintained. The driver exchanges of the vehicle slowing to zero then returning to speed required 2.63 miles. After the range at 45 mph was completed, the post-test drive required an additional drive of 0.86 miles for the vehicle to come to a stop to be transported to the test prep area and the EVSE unit for the post-test charge. These distances can be added to the distance traveled during the range test $\mathbf{( B )}$ to obtain the total distance traveled ( 371.1 miles). However, the energy consumption values consider only the distance traveled during the test itself, or value (B).
 is achieved and maintained. After the range at 60 mph was completed, there is still ESS energy throughput during the drive to return the vehicle to the test prep area and the EVSE unit for the post-test charge. The pre-test drive required 0.60 kWh , the driver exchange when the vehicle slowed to zero then returned to speed required 0.54 kWh , while the post-test drive required 0.03 kWh . These energy inputs can be added to the energy consumed during the range test (A) to obtain the total output from the battery ( 69.9 kWh , denoted as ( $\mathbf{A}+\mathbf{)}$ ) that is used in the calculations discussed in Notes 13 and 15.
8. In addition to the range measured for the 60 mph test, the pre-test drive required 1.35 miles from the test prep area to the point at which the vehicle test speed is achieved and maintained. The driver exchange of the vehicle slowing to zero then returning to speed required 1.55 miles. After the range at 60 mph was completed, the post-test drive required an additional drive of 0.98 miles for the vehicle to come to a stop to be transported to the test prep area and the EVSE unit for the post-test charge. These distances can be added to the distance traveled during the range test (B) to obtain the total distance traveled ( 284.2 miles). However, the energy consumption values consider only the distance traveled during the test itself, or value (B).
 is achieved and maintained. After the range at 70 mph was completed, there is still ESS energy throughput during the drive to return the vehicle to the test prep area and the EVSE unit for the post-test charge. The pre-test drive required 0.73 kWh , the driver exchange when the vehicle slowed to zero then returned to speed required 0.50 kWh , while the post-test drive returned 0.06 kWh . These energy inputs can be added to the energy consumed during the range test ( $\mathbf{A}$ ) to obtain the total output from the battery ( 69.8 kWh , denoted as $(\mathbf{A}+\mathbf{)})$ that is used in the calculations discussed in Notes 13 and 15.
10. In addition to the range measured for the 70 mph test, the pre-test drive required 1.76 miles from the test prep area to the point at which the vehicle test speed is achieved and maintained. The driver exchange of the vehicle slowing to zero then returning to speed required 0.82 miles. After the range at 70 mph was completed, the post-test drive required an additional drive of 0.68 miles for the vehicle to come to a stop to be transported to the test prep area and the EVSE unit for the post-test charge. These distances can be added to the distance traveled during the range test $\mathbf{( B )}$ to obtain the total distance traveled ( 231.3 miles). However, the energy consumption values consider only the distance traveled during the test itself, or value (B).
11. The AC electricity consumption rate is calculated by dividing the DC electricity consumption rate (in Wh/mi) by the Overall Trip Efficiency for that particular speed.
12. The DC electricity consumption rate is calculated by dividing the DC energy from the battery as the set speed (A) by the range at the set speed (B).

5/10/2016 • INL/MIS-15-34211
13. Battery Roundtrip Efficiency is calculated by dividing the DC energy out of the battery ( $\mathbf{A}+$ ) by the DC energy from the on-board charger into the battery (D).
14. On-Board Charger Efficiency is calculated by dividing the DC energy from the on-board charger into the battery (D) by the AC energy from the EVSE (C).
15. Overall Vehicle Efficiency is calculated by dividing the DC energy out of the battery (A+) by the AC energy from the EVSE (C)

As a production vehicle, this vehicle is assumed to meet all Federal Motor Vehicle Safety Standards (FMVSS) for Battery Electric Vehicles.

This information was prepared with the support of the U.S. Department of Energy (DOE) under Award No. DE-EE0005501. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the DOE.

