VEHICLE TECHNOLOGIES PROGRAM

2013 Nissan Leaf Advanced Vehicle Testing - Baseline Testing Results

VEHICLE SPECIFICATIONS ${ }^{1}$		
Vehicle Features VIN: 1N4AZ0C0DC405045 Trim Level: SV Class: Midsize Car Seatbelt Positions: 5 Type: BEV CARB ${ }^{2}$: Type II ZEV EPA Fuel Economy: $270 \mathrm{~Wh} / \mathrm{mi}$, $129 \mathrm{MPGe} / 340 \mathrm{~Wh} / \mathrm{mi}$, 102 MPGe /300 Wh/mi, 115 MPGe (City/Highway/Combined) EPA Range: 84 miles Motor Type: Permanent Magnet AC Synchronous Maximum Power: 80 kW Maximum Torque: 253 Nm Cooling: Active - Liquid Cooling Transmission Type: Automatic Fixed Gear Final Drive Ratio: 7.9	Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-Ion (LMO) Cathode /Anode Material: Lithium-Manganese Oxide / Carbon Number of Cells: 192 Cell Config.: 2 Parallel, 96 Series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Weight of Pack: 640 lb Pack Location: Underneath Passenger Floor Pan Cooling: Active - Air Cooled within Sealed Pack Enclosure	Weights Design Curb Weight: 3,277 lb Delivered Curb Weight: 3,302 lb Distribution F/R (\%): 58/42 GVWR: 4,193 lb GAWR F/R: 2,167/2,035 lb Maximum Payload: 916 lb Dimensions Wheelbase: 106.3 in Track F/R: 60.6/60.4 in Length/Width: 175.0/69.7 in Height: 61.0 in Ground Clearance: 6.3 in Tires Manufacturer: Bridgestone Model: Ecopia EP422 Size: 205/55 R16 Pressure F/R: 36/36 psi Spare Installed: Sealant and Inflator

PERFORMANCE STATISTICS ${ }^{3}$					
TRACK TESTING ${ }^{4}$	DYNAMOMETER TESTING ${ }^{9}$				
Acceleration 0-60 mph ${ }^{5}$ Measured Time: 10.6 s Performance Goal: $\leq 13.5 \mathrm{~s}$ Peak Power from Battery: 87.1 kW Maximum Speed At $1 / 4$ Mile: 77.5 mph At 1 Mile ${ }^{6}$: 91.0 mph Performance Goal: $\geq 90 \mathrm{mph}$ at 1-mile mark Braking at 50\% SOC from $\mathbf{6 0 - 0} \mathrm{mph}^{7}$ Measured Time: 3.12 s Distance: 121.0 ft Peak Power into Battery: 0.7 kW Braking at 100\% SOC from 60-0 mph^{7} Measured Time: 3.03 s Distance: 115.2 ft Peak Power into Battery: 10.6 kW Deceleration 60-10 mph ${ }^{8}$ Measured Time: 55.6 s Distance: 2,480.4 ft Peak Power into Battery: 14.0 kW Total Energy into Battery: 78.6 Wh	Cycle Results ${ }^{10}$				
		$72{ }^{\circ} \mathrm{F}$	20	$5^{\circ} \mathrm{F}+850 \mathrm{~W} / \mathrm{m}^{2}$	
	UDDS (Cold Start)	211.7 Wh/mi	458.7 Wh/mi	293.5 Wh/mi	
	UDDS	201.4 Wh/mi	369.1 Wh/mi	74.5 Wh/mi	
	HWFE	$240.8 \mathrm{~Wh} / \mathrm{mi}$	349.9 Wh/mi	$72.1 \mathrm{~Wh} / \mathrm{mi}$	
	US06	321.6 Wh/m	425.7 Wh/mi	59.8 Wh/mi	
	SC03	N/A	N/A	289.3 Wh/mi	
	City Range		US06 Range		68.2 miles
	Highway Range	92.7 miles	miles		
	Energy Consumption at Steady-State Speed, 0\% Grade				
	10 mph	133.4 Wh/mi	50 mph	236.0 Wh/m	
	20 mph	147.1 Wh/mi	60 mph	285.4 Wh/mi	
	30 mph	168.0 Wh/mi	70 mph	343.8 Wh/mi	
	40 mph	197.6 Wh/mi	80 mph	397.8 Wh/mi	
	Duration of Passing Maneuver at Grade ${ }^{11}$				
	0\% Grade		3\% Grade	\% Grade	
	$35-55 \mathrm{mph}$	4.1 s	4.7 s		5.5 s
	$55-65 \mathrm{mph}$	3.0 s	3.8 s		4.8 s
	35-70 mph	8.9 s	10.7 s		13.5 s
	$55-80 \mathrm{mph} \quad 9.1 \mathrm{~s}$		12.0 s		17.8 s
	Maximum Speed at 25\% Grade from Stop: 44.0 mph				
NOTES (also from previous page): 1. Vehicle specifications were supplied by the manufacturer, measured, or derived from a literature review. The vehicle is estimated to be classified as a Type II ZEV by the California Air Resources Board (CARB) because its range on the UDDS is greater than 100 miles (but less than 200) and the charge time to replace 95 miles of UDDS range is not 10 minutes or less. 3. Performance numbers based on "Normal" vehicle mode. Performance numbers are averages from multiple tests. 4. Track testing occurs when the vehicle has achieved its "break-in mileage" of between 4,000 to 6,000 miles, and at the delivered curb weight plus $332 \pm 10 \mathrm{lb}$ (including driver and test equipment), distributed in a manner similar to the original curb loading of the vehicle. Track testing took place between July 11 and July 24, 2013 with a beginning vehicle odometer reading of 4,804 miles. The ambient temperatures ranged from $69^{\circ} \mathrm{F}$ to $97^{\circ} \mathrm{F}$ for the September tests. No accessories were used except for headlights as required by track regulation. 5. The acceleration is measured from the point at which the vehicle begins to move. The acceleration and maximum speed results were averaged from 12 runs. The peak power value was taken from a single run. 6. The maximum speed was reached before the one-mile mark. Controlled braking on dry surface. Two brake tests were performed when the battery was at 50% state of charge (SOC) and also at 100% SOC. The peak power into the battery value was taken from a single run. No battery charging occurred during most of the brake events; this implies that during a full brake request, the friction brakes are predominantly used. 8. Coasting in drive on dry surface. Test run data were cut off when the vehicle reached 10 mph , as vehicle creep speeds are typically below this threshold. The results are averaged from 12 runs. The peak power into the battery value and total energy into the battery value were both taken from a single (but different) run. 9. Dynamometer testing occurs after the track testing is complete. Dynamometer testing began on February 25,2014 , with the vehicle odometer reading 5,035 miles. A comprehensive explanation of the dynamometer facility and methodology can be found at http://www.transportation.anl.gov/D3/, titled "Chassis Dynamometer Testing Reference Document". The ABC coefficients derived from track coastdown testing and matched on the dynamometer were A: 31.911 lb , B: $0.11588 \mathrm{lb} / \mathrm{mph}$, and C: $0.0177568 \mathrm{lb} / \mathrm{mph}^{2}$. All electrical consumption values are given in $\mathrm{AC} \mathrm{Wh} / \mathrm{mi}$. 10. The Cycle Results table presents the fuel economy achieved by the vehicle on five EPA drive cycles at three different ambient temperatures: (1) $72{ }^{\circ} \mathrm{F}$ with vehicle climate-control off, (2) $20^{\circ} \mathrm{F}$ with vehicle climate-control set to $72^{\circ} \mathrm{F}$ Auto, and (3) $95^{\circ} \mathrm{F}$ with vehicle climate-control set to $72^{\circ} \mathrm{F}$ Auto. The vehicle is also subjected to $850 \mathrm{~W} / \mathrm{m}^{2}$ of solar load at 95 ${ }^{\circ} \mathrm{F}$ to simulate direct sunlight. The drive cycles include a hot start unless otherwise indicated. The ranges are calculated using SAE J1634, and are for a temperature of $72{ }^{\circ} \mathrm{F}$. 11. The passing maneuver value indicates the amount of time required for the vehicle to transition from the first to the second speed, at the specified grade.					

CONSTANT-SPEED RANGE AND CHARGE TESTING ${ }^{1}$

	45 mph Test ${ }^{2}$	60 mph Test ${ }^{3}$	$70 \mathrm{mph} \mathrm{Test}{ }^{4}$
Average DC power out of battery at set speed (kW):	9.1	18.1	25.0
(A) DC energy out of battery at set speed (kWh $)^{5,7,9}$:	18.9	18.0	18.0
$\left(\mathbf{A +)}\right.$ Total DC energy out of battery (kWh) ${ }^{5,7,9}$:	19.2	18.5	18.6
Battery capacity discharge at set speed (Ah):	52.1	50.6	51.1
(B) \quad Range at set speed (mi) ${ }^{6,8,10}$:	93.7	60.7	50.2
(C) Post-test charge AC energy from EVSE @ 240 V to onboard charger (kWh):	22.6	22.5	22.7
(D) Post-test charge DC energy into battery from onboard charger (kWh):	19.6	19.4	19.6
Post-test charge duration (HH:MM):	03:55	04:36	04:38
AC electricity consumption rate ($\mathrm{Wh} / \mathrm{mi})^{11}$:	237	362	437
DC electricity consumption rate ($\mathrm{Wh} / \mathrm{mi})^{12}$:	202	297	359
(A+/D) Battery Roundtrip Efficiency ${ }^{13}$:	98\%	95\%	95\%
(D/C) On-Board Charger Efficiency ${ }^{14}$:	87\%	86\%	86\%
($\mathrm{A}+/ \mathrm{C}$) Overall Trip Efficiency ${ }^{15}$:	85\%	82\%	82\%

NOTES:

1. See Note 3 and Note 4 on page 2. The vehicle is accelerated to the desired speed and then cruise control is used to maintain the speed. Range is considered reached when the vehicle is no longer capable of maintaining a speed that is 2 mph lower than the set speed.
2. During the 45 mph range test, the maximum battery temperature was $23^{\circ} \mathrm{C}$ and the average ambient temperature was $21^{\circ} \mathrm{C}$. During the post-test charge, the maximum battery temperature was $25^{\circ} \mathrm{C}$, and the average ambient temperature was $18^{\circ} \mathrm{C}$.
3. During the 60 mph range test, the maximum battery temperature was $18^{\circ} \mathrm{C}$ and the average ambient temperature was $14^{\circ} \mathrm{C}$. During the post-test charge, the maximum battery temperature was $27^{\circ} \mathrm{C}$, and the average ambient temperature was $25^{\circ} \mathrm{C}$.
4. During the 70 mph range test, the maximum battery temperature was $23^{\circ} \mathrm{C}$ and the average ambient temperature was $21^{\circ} \mathrm{C}$. During the post-test charge, the maximum battery temperature was $27^{\circ} \mathrm{C}$, and the average ambient temperature was $24^{\circ} \mathrm{C}$.
5. In addition to the energy discharged from the battery during the 45 mph test, energy was discharged during the drive from test prep area to point at which vehicle test speed is achieved and maintained. After the range at 45 mph was completed, there is still ESS energy throughput during the drive to return the vehicle to the test prep area and the EVSE unit for the post-test charge. The pre-test drive required 0.25 kWh while the post-test drive required 0.04 kWh , and these energy inputs can be added to the energy consumed during the range test (A) to obtain the total output from the battery (19.2 kWh , denoted as $(\mathbf{A}+$) that is used in the calculations discussed in Notes 13-15.
6. In addition to the range measured for the 45 mph test, the pre-test drive required 0.68 miles from test prep area to point at which vehicle test speed is achieved and maintained. After the range at 45 mph was completed, the post-test drive required an additional drive of 0.46 miles to return to the test prep area and the EVSE unit for the post-test charge. These distances can be added to the distance traveled during the range test (B) to obtain the total distance traveled (94.8 miles). However, the energy consumption values consider only the distance traveled during the test itself, or value (B).
7. In addition to the energy discharged from the battery during the 60 mph test, energy was discharged during the drive from test prep area to point at which vehicle test speed is achieved and maintained. After the range at 45 mph was completed, there is still ESS energy throughput during the drive to return the vehicle to the test prep area and the EVSE unit for the post-test charge. The pre-test drive required 0.41 kWh while the post-test drive required 0.04 kWh , and these energy inputs can be added to the energy consumed during the range test (A) to obtain the total output from the battery $(18.5 \mathrm{kWh}$, denoted as $(\mathbf{A}+)$) that is used in the calculations discussed in Notes 13-15.
8. In addition to the range measured for the 60 mph test, the pre-test drive required 0.92 miles from test prep area to point at which vehicle test speed is achieved and maintained. After the range at 60 mph was completed, the post-test drive required an additional drive of 0.80 miles to return to the test prep area and the EVSE unit for the post-test charge. These distances can be added to the distance traveled during the range test (B) to obtain the total distance traveled (62.4 miles). However, the energy consumption values consider only the distance traveled during the test itself, or value (B).
9. In addition to the energy discharged from the battery during the 70 mph test, energy was discharged during the drive from test prep area to point at which vehicle test speed is achieved and maintained. After the range at 70 mph was completed, there is still ESS energy throughput during the drive to return the vehicle to the test prep area and the EVSE unit for the post-test charge. The pre-test drive required 0.50 kWh while the post-test drive required 0.11 kWh , and these energy inputs can be added to the energy consumed during the range test $\mathbf{(A)}$) to obtain the total output from the battery (18.6 kWh , denoted as ($\mathbf{A}+$)) that is used in the calculations discussed in Notes 13-15.
10. In addition to the range measured for the 70 mph test, the pre-test drive required 1.05 miles from test prep area to point at which vehicle test speed is achieved and maintained. After the range at 70 mph was completed, the post-test drive required an additional drive of 1.70 miles to return to the test prep area and the EVSE unit for the post-test charge. These distances can be added to the distance traveled during the range test (B) to obtain the total distance traveled (53.0 miles). However, the energy consumption values consider only the distance traveled during the test itself, or value (B).
11. The AC electricity consumption rate is calculated by dividing the DC electricity consumption rate (in $\mathrm{Wh} / \mathrm{mi}$) by the Overall Trip Efficiency for that particular set speed.
12. The DC electricity consumption rate is calculated by dividing the DC energy from the battery at set speed (A) by the range at set speed (B).
13. Battery Roundtrip Efficiency is calculated by dividing the DC energy out of the battery ($\mathbf{A}+$) by the DC energy from the on-board charger into the battery (\mathbf{D}).
14. On-Board Charger Efficiency is calculated by dividing the DC energy from the on-board charger into the battery (D) by the AC energy from the EVSE (C).
15. Overall Vehicle Efficiency is calculated by dividing the DC energy out of the battery ($\mathbf{A}+$) by the AC energy from the EVSE (C).

As a production vehicle, this vehicle is assumed to meet all Federal Motor Vehicle Safety Standards (FMVSS) for Battery Electric Vehicles.

This information was prepared with the support of the U.S. Department of Energy (DOE) under Award No. DE-EE0005501. However, any opinions, findings, conclusions or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the DOE.

