USPS eLLV Conversion Fleet

Fleet Location: Washington D.C Metro Area
Reporting period: July 2011

Number of Vehicles: 5
Number of vehicle days driven: 33

All Trips Combined	
Overall DC electrical energy consumption (DC Wh/mi)	408
Overall AC electrical energy consumption $(\mathrm{AC} \mathrm{Wh} / \mathrm{mi})^{1}$	582
Average operating electricity cost (cents per mile $)^{2}$	6.5
Total number of trips	617
Total distance traveled (mi)	384
Average Trip Distance (mi)	0.6

Stop \& Go Trips (>5 stops/mile)

DC electrical energy consumption (DC Wh/mi)	452
Number of trips	507
Distance traveled (mi)	142
Percent of total distance traveled (\%)	37%
Average Trip Distance (mi)	0.3
Average Driving Speed (mph)	6.6
Average Stops per mile	31.1
Percent of Regen Braking Energy Recovery (\%)	14%

City Trips (≤ 5 stops/mile \& < 37 mph avg)

DC electrical energy consumption (DC Wh/mi)	380
Number of trips	106
Distance traveled (mi)	237
Percent of total distance traveled (\%)	62%
Average Trip Distance (mi)	2.2
Average Driving Speed (mph)	17.1
Average Stops per mile	3.4
Percent of Regen Braking Energy Recovery (\%)	14%

Highway Trips (≤ 5 stops/mile \& $\geq 37 \mathrm{mph}$ avg)

DC electrical energy consumption (DC Wh/mi)	423
Number of trips	4
Distance traveled (mi)	5
Percent of total distance traveled (\%)	1%
Average Trip Distance (mi)	1.3
Average Driving Speed (mph)	42.7
Average Stops per mile	2.4
Percent of Regen Braking Energy Recovery (\%)	1%

[^0]Idaho Nationol Laboratory

[^0]: 1. Calculation based upon average of the vehicles' roundtrip charging efficiency (70\%)
 2. From www.eia.gov, the national average cost of electricity is $\$ 0.112$ per $A C \mathrm{kWhr}$. The gasoline powered LLV fleet averages 10 mpg .

 NOTE: A trip is defined as all vehicle operation between key on and key off

