

Steady State Vehicle Charging Fact Sheet: 2015 Mercedes B-Class

Description

The steady state charging behavior of a 2015 Mercedes B-Class was tested at many different charge rates. Testing measured the efficiency and power quality of the vehicle charging. Vehicle charging is considered to be in steady state when the RMS current magnitude is not changing and the voltage source is close to nominal. Testing was done for both 120 volt Level 1 charging and 240 volt Level 2 charging. The Level 1 and Level 2 charging tests were done on electrical circuits with a continuous current rating of 12 amps and 30 amps respectively.

Key Insights from Testing

 The Mercedes B-Class EV has the best power quality when charged at the max charge rate. The Level 2 efficiency is not strongly influenced by the charge rates when the Level 2 current is greater than 16 amps.

Vehicle Specifications

Vehicle Type: Battery electric vehicle

Class: Mid-size Battery: Lithium-ion

Rated Battery Capacity: 36 kWh Charge Port: J1772 compatible

DC Fast Charge: No

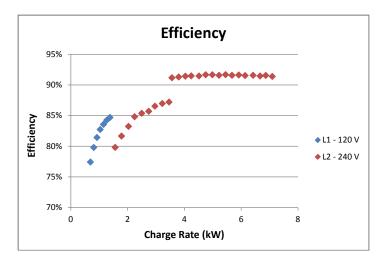
Electrical Measurement Points¹

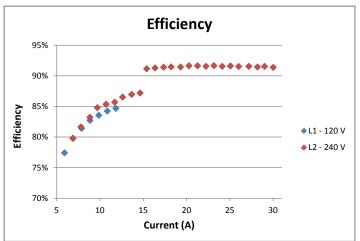
- AC Input: EVSE Output
- DC Output: Powertrain Electrical Distribution Module high voltage and 12 volt output
- 1. The DC output electrical measurement point was only used to calculate efficiency
- 2. The voltage source was close to nominal during the testing
- 3. See definition of total harmonic distortion on page 3
- 4. Current magnitudes are given in RMS values

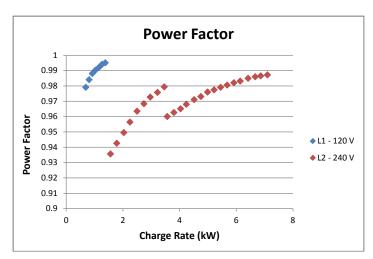
Source Characteristics²

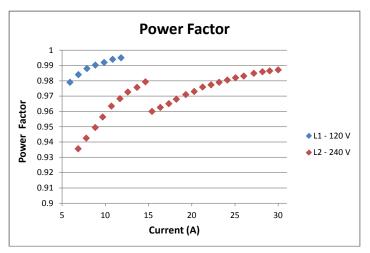
Nominal Frequency	60 Hz
Nominal Voltages	120 V / 240 V
Max Deviation from Nominal Frequency	0.06%
Max Deviation from Nominal Voltage Magnitude	2.64%
Max Voltage Total Harmonic Distortion (THD) ³	1.67%

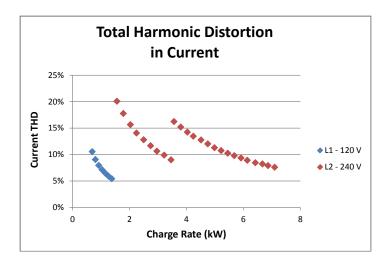
Load Characteristics

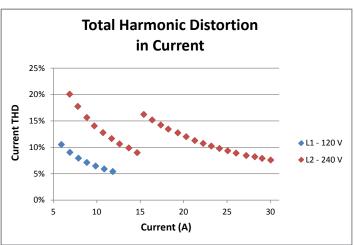

Level 1 - 120 V Test

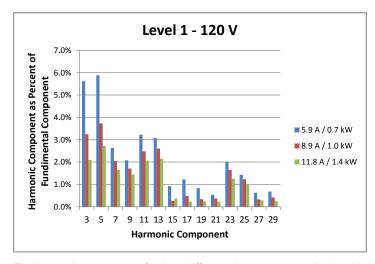

	Min Charge Rate	Max Charge Rate7
Charge Rate	0.69 kW	1.38 kW
Current ⁴	5.9 A	11.8 A
Efficiency ⁵	77.4%	84.7%
Power Factor ⁶	0.98	1.00
Current THD3	10.5%	5.4%

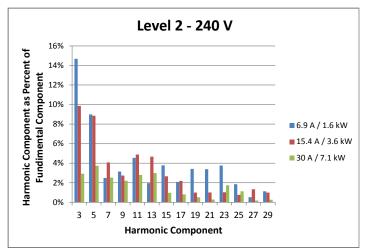

Level 2 - 240 V Test


	Min Charge Rate	Max Charge Rate8
Charge Rate	1.56 kW	7.10 kW
Current ⁴	6.9 A	30.0 A
Efficiency ⁵	79.8%	91.4%
Power Factor ⁶	0.94	0.99
Current THD3	20.1%	7.6%


- 5. See definition of efficiency on page 3
- 6. See definition of power factor on page 3
- 7. This is the max charge rate on a circut with a continuous current rating of 12 amps
- 8. This is the max charge rate on a circuit with a continuous current rating of 30 amps







NOTES: See the definitions for efficiency, power factor and total harmonic distortion on page 3 All power factor values are leading

All current magnitudes are given as RMS values

L1 = Level 1 charging, L2 = Level 2 charging

The harmonic components for three different charge rates are displayed in the charts above for both the Level 1 and Level 2 tests. For each test, the minimum charge rate (blue), maximum charge rate (green), and a charge rate between the minimum and maximum (red) were selected. In all cases, either the third or fifth harmonic is the dominant harmonic component.

Definitions

Efficiency - Efficiency is the useful power output divided by the total power input. In order to minimize the total amount of energy needed to complete a given task it is desirable for the efficiency to be as close to 100% as possible. The efficiency in this testing is the efficiency of the on-board charge module

Power Factor- In the presence of a stiff voltage source, power factor is a measure of how much of the current is being utilized to perform work. Since the electrical infrastructure is limited in the amount of current it can deliver, power factor is a way to determine how efficiently the electrical infrastructure is being utilized. A power factor of 1 signifies that all of the current is delivering useful work, a power factor of 0.5 means that only half of the current delivering useful work. Ideally the power factor should be as close to 1 as possible.

Total Harmonic Distortion (THD) - In power systems, the voltage and current waveforms are both 60 Hz sinusoidal waveforms. The total harmonic distortion (THD) is a measure of the amount of distortion that is present in the sinusoidal wave form. Excessive amounts of THD in current wave forms can cause many problems in a power system such as overheating transformers, motors, and capacitors among other things. Ideally the THD should be as close to zero as possible.