Advanced Vehicle Testing Activity at Idaho National Laboratory:

Evaluation of Vehicles and the Grid together as a System

Barney Carlson
Research Engineer
Energy Storage and Transportation Systems
Idaho National Laboratory

Presented to the IEA Task 17 meeting April 16, 2015
INL Programs of National Importance

Nuclear Science & Technology

National & Homeland Security Science & Technology
- Nuclear Nonproliferation
- Critical Infrastructure Protection
- Industrial Control Systems
- Cybersecurity
- Electric Grid Resiliency
- Wireless National User Facility
- Armor & Defense Systems

Energy & Environment Science & Technology
- Hybrid Energy Systems
- Non-traditional Hydrocarbons
- Battery & Energy Storage Technologies
- Clean Energy & Water
- Bio-fuels & Synfuels
- Energy Critical Materials

Fuel Cycle R&D
- LWR Sustainability Program
- Advanced Reactor R&D
- ATR National Scientific User Facility
- Space Nuclear
- NGNP R&D

Research – Development – Demonstration – Deployment
The Idaho National Laboratory Site

We Maintain –

• 890 square miles
• 111 miles of electrical transmission and distribution lines
• 579 buildings
• 177 miles of paved roads
• 14 miles of railroad lines
• 3 reactors
• 2 spent fuel pools
• Mass transit system
• Security
• Museum
• “Landfills”
• 300 metric tons of used fuel
• Educational and research partnerships – CAES

...the National Nuclear Laboratory
Technical Challenges & Objectives

Advance Vehicle Testing and Analysis’ objective is to support DOE’s mission to reduce foreign imports by 50% by 2020, reduce greenhouse gas emissions by 15% by 2020 & achieve 54.5 MPG CAFE mandate by 2025

- Identify real-world potential of technologies to displace petroleum
- Verify / maximize return on investment of DOE-funded technology development, primarily on:
 - Advanced energy storage (i.e., batteries) technologies and chemistries
 - Plug-in electric whole-vehicle technologies
 - Fueling system technologies
 - conductive and wireless grid-connected electric drive vehicle fueling infrastructure
 - Advanced climate control, power electronic, and other ancillary and accessory systems technologies
 - Advanced internal combustion engines (CNG/Turbocharged Direct Injection Diesel)

Feedback to DOE, OEMs, SAE, fleet managers, policy makers and other key stakeholders
Technical Challenges & Objectives

Advance Vehicle Testing and Analysis’ objective is to support DOE’s mission to reduce foreign imports by 50% by 2020, reduce greenhouse gas emissions by 15% by 2020 & achieve 54.5 MPG CAFE mandate by 2025

- Identify real-world potential of technologies to displace petroleum
- Verify / maximize return on investment of DOE-funded technology development, primarily on:
 - Advanced energy storage (i.e., batteries) technologies and chemistries
 - Plug-in electric whole-vehicle technologies
 - Fueling system technologies
 - conductive and wireless grid-connected electric drive vehicle fueling infrastructure
 - Advanced climate control, power electronic, and other ancillary and accessory systems technologies
 - Advanced internal combustion engines (CNG/Turbocharged Direct Injection Diesel)

Feedback to DOE, OEMs, SAE, fleet managers, policy makers and other key stakeholders
Vehicles and Electric Grid: Together as a System

- Areas of research at INL to improve Vehicle and Grid as a system
 - Renewable energy and non-fossil fuel energy sources
 - Wind, solar, hydro-electric
 - Waste heat (nuclear, other processes)
 - Vehicle Charging Infrastructure Evaluation
 - Utilization of home, workplace, and public charging
 - Wireless and Conductive Charging Evaluation
 - Efficiency
 - Power Quality impact to Grid
 - Test Procedure development
 - Advanced technology vehicles (BEV, PHEV, EREV, Adv. ICE)
 - On-road testing and data collection
 - Captured test fleet (195,000 miles per vehicle (313,800 km))
 - Data collection from privately owned vehicle
 - Energy Storage R&D, testing, and evaluation
 - Performance Assessment
 - Procedures and Protocols
Vehicles and Electric Grid: Together as a System

image from: Montgomery County, MD And General Motors
Vehicles and Electric Grid: Together as a System

- Vehicle Optimization

image from: Montgomery County, MD And General Motors
Vehicles and Electric Grid: Together as a System

- Vehicle and Grid interaction and Optimization

image from: Montgomery County, MD And General Motors
INL – Battery Test Center and Advanced Vehicles Evaluation

Development of Next-Generation Low Cost / Reliable Batteries:
- INL capabilities to lead Performance Science
- Battery Testing Center & Advanced Vehicle Testing
- Strong partnerships with:
 - DOE-EERE (USABC)
 - OEMs
 - Battery Developers
- Enabling / accelerating next gen-batteries

Expansion of Performance Science Life-Time Modeling
INL – Advanced Vehicles & Infrastructure

Enhance Consumer Experience with Advanced Technology Vehicles:

- Big Data Analysis
- Advanced Vehicle Testing & EV Infrastructure Laboratory
- Steward to DOE-EERE, OEMs, SAE & CARB
- Impact: Increasing ROI (Return of Investment) on alt-fuel infrastructure development / deployment

The EV Project

- 3,000 Nissan Leafs and Chevrolet Volts
- 1,000 level 2 residential EVSE
- 6,000 level 2 commercial EVSE
- Up to 220 DC fast chargers
- 19 US states

Big-Data Analysis

Heat Maps of EV Chargers

Global Standardization of wireless charging with SAE & automotive manufacturers

Alf-Fuel Corridor Analysis
Vehicle Charging Levels

- On-board charger (AC power delivered to vehicle)
 - Level 1 (120 VAC)
 - SAE J1772 (~1.4 kW)
 - Level 2 (208 – 240 VAC)
 - SAE J1772 (up to 19.2 kW but typically 3.3 or 6.6 kW)

- Off-board charger (DC power delivered to vehicle)
 - DC Fast Charge (~50 kW)
 - CHAdeMO
 - SAE J1772 CCS (Combo Connector)
Vehicle Charge Connection International Standards

Level 1 & Level 2

DC Fast Charge

<table>
<thead>
<tr>
<th>Type 1/USA</th>
<th>Type 2/Europa</th>
<th>GB/China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternating current (AC)</td>
<td>Direct current (DC)</td>
<td></td>
</tr>
<tr>
<td>SAE J1772/IEC 62196-2</td>
<td>IEC 62196-3</td>
<td>GB Part 2</td>
</tr>
<tr>
<td>IEC 62196-3</td>
<td>IEC 62196-3</td>
<td>GB Part 3/IEC 62196-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System A CHAdeMO (Japan)</th>
<th>System B CATARC (PRC)</th>
<th>COMBO1 (US)</th>
<th>System C</th>
<th>COMBO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Inlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Protocol</td>
<td>CAN</td>
<td>PLC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vehicle Charge Connection - Tesla

Tesla Roadster

Tesla Model S
Advanced Vehicle Testing Activity at Idaho National Lab

On-Road Vehicle Driving and Charging Analysis
Advance Vehicle Testing Experience

- Since 1994, INL staff have benchmarked PEVs in field operations (via data loggers), closed test tracks and dynamometers
 - INL has accumulated 232 million miles (373 million km) and 44,300 AC MWh from 27,400 electric drive vehicles and 17,000 charging units

Example: EV Project

- **8,228 Leafs, Volts and Smarts**,
 - 124 million test miles.
 - At one point, 1 million test miles every 5 days
- **12,363 EVSE and DCFC**
 - 4.2 million charge events
Driving and Charging patterns

- Analysis of Driving Patterns
 - Energy consumption
 - Usage patterns
 - Common parking location
 - (i.e. should EVSE / chargers be located here)

- Analysis of Charging Patterns
 - Time of Day utilization
 - Home
 - Away from Home
 - DC Fast Charge
 - Power draw
 - Impact of variable time of day electricity pricing
Workplace Charging Impact

- Most charging occurs at Home and Work
- But “Other” charging may be critical to a few drivers

Workplace Charging:
- Enabled 14% of commutes to work in a Leaf
- 12% more EV miles on average than not charging at work
- 15 mile range increase on average due to charging at work

Nissan Leafs
EV Miles Traveled (eVMT) Analysis Results

- **EREV (red)** shows comparable eVMT as pure EV (green)

<table>
<thead>
<tr>
<th></th>
<th>Nissan LEAF *</th>
<th>Chevrolet Volt *</th>
<th>Ford Focus Electric</th>
<th>Ford C-Max EnergI</th>
<th>Ford Fusion EnergI</th>
<th>Honda Fit EV</th>
<th>Honda Accord PHEV</th>
<th>Toyota Prius PHEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Vehicles</td>
<td>4,039</td>
<td>1,867</td>
<td>2,193</td>
<td>5,368</td>
<td>5,803</td>
<td>645</td>
<td>189</td>
<td>1,523</td>
</tr>
<tr>
<td>Number of Vehicle Months</td>
<td>35,294</td>
<td>20,545</td>
<td>12,622</td>
<td>39,096</td>
<td>32,022</td>
<td>6,090</td>
<td>1,437</td>
<td>15,676</td>
</tr>
<tr>
<td>Total Vehicle Miles Traveled VMT (miles)</td>
<td>28,520,792</td>
<td>20,950,967</td>
<td>10,043,000</td>
<td>39,376,000</td>
<td>33,098,000</td>
<td>4,912,920</td>
<td>1,794,494</td>
<td>19,772,530</td>
</tr>
<tr>
<td>Total Calculated Electric Vehicle Miles Traveled eVMT (miles)</td>
<td>28,520,792</td>
<td>15,599,508</td>
<td>10,043,000</td>
<td>12,918,000</td>
<td>11,572,000</td>
<td>4,912,920</td>
<td>399,412</td>
<td>3,224,981</td>
</tr>
</tbody>
</table>

Table:

- **Avg. Monthly VMT**: 808.1, 1,019.8, 795.7, 1,033.6, 1,033.6, 806.7, 1,248.8, 1,281.3
- **Avg. Monthly eVMT**: 808.1, 759.3, 795.7, 339.1, 361.4, 606.7, 278, 207.0
- **Estimated Annual VMT**: 9,697, 12,238, 9,548, 12,403, 12,403, 9,680, 14,986, 15,136
- **Estimated Annual eVMT**: 9,697, 9,112, 9,548, 4,069, 4,337, 9,680, 3,336, 2,484
- **Annual eVMT (km)**: 15,606, 14,664, 15,366, 6,548, 6980, 15,578, 5,369, 3998

Data Format Description

- **Key-On / Key-Off**
- **Enhanced Key-On / Key-Off**

Geographic Characterization

- **CA, OR, WA, AZ, TX, TN, GA, DC, PA, IL**
- **Nationwide**
- **CA, OR, NJ, MD, CT, MA, RI, NY**
- **CA, NY**
- **ZEV States and other states**

Minimally Charged Vehicles are Not Excluded from analysis. These data include 14% of Accord PHEVs that achieve between 0-50 monthly eVMT
Distance Bins: =0, >0 to 100, >100 to 200, >300 to 400, >400 to 500, etc.
Advanced Vehicle Testing Activity at Idaho National Lab

On-Road and Laboratory Testing and Evaluation
Advanced Vehicle Testing Process

New Advanced Vehicle

End-of-Test
195k Mi – HEV, PHEV, ICE
60,000 Mi - BEV

In-Lab Battery Characterization

On-Road Operation, Logging, Interim Component Testing

INL Data & WWW Servers

Standardized Dynamometer Testing

Test Track Performance

Intertek
On-Road Vehicle Fleet Test Results

- Information and Results Published to AVTA website
 - Baseline Performance Testing
 - Specifications
 - Acceleration / Braking
 - Test Track energy consumption
 - Battery Test Results
 - Capacity
 - Power Capability
 - Fleet Fuel Economy results
 - Operation over vehicle life
 - Operating Costs Fact Sheet
 - Maintenance History

http://avt.inel.gov/phev.shtml
DC Fast Charging Impact Study on 2012 Leafs

After 50,000 miles (80,000 km):
- NO appreciable difference in capacity loss (~2%) between Level II and DC Fast Charging
- All Leafs were the same color – avoid unequal solar loading
- Leafs’ climate control is set at 23°C year round

http://avt.inel.gov/pdf/energystorage/DCFC_Sudy_FactSheet_50k.pdf
Electric Vehicle Infrastructure (EVI) Laboratory

- Evaluate Conductive and Wireless Charging Systems
 - Efficiency and energy consumption
 - EM field emissions (wireless charging only)
 - Power Quality (static and dynamic)
 - Total Harmonic Distortion
 - Power Factor
 - Cyber Security Assessment

- Wide range of power
 - Level 1, 120 VAC
 - Level 2, 208 / 240 VAC
 - DCFC, 480 VAC 3φ
 - Variable voltage source
 - Grid Emulator
Electric Vehicle Infrastructure (EVI) Laboratory Support of SAE J2954

• Support SAE J2954 Wireless Charging standards
 – providing test results
 – test procedure development
 – document refinement

• INL conducted independent testing using draft J2954 test procedures for:
 – System Efficiency and EM-field across a range of misalignment, coil gap, and output power
 • Off-board vehicle (bench test)
 • On-board vehicle
 – Debris tolerance and response
 – Mock floor-pan characterization

• INL is the only DOE lab to publish wireless charging benchmarking results
Fact Sheet: Wireless Charger Vehicle Test Results

PLUGLESS™ Level 2 EV Charging System (3.3 kW) by Evatran Group Inc.

Results from Laboratory Testing as installed on a 2012 Chevy Volt

Descriptive Specifications:
- System input voltage: 208 to 249 VAC
- Circuit breaker rating: 30 A
- Nominal gap between coils: 100 mm
- Rated maximum power output: 3300 watts
- Parking Pad (Primary coil system) shape: Approximately Circular
 - Size: 355 dia. x 470 long mm
- Vehicle Adapter (Secondary coil system) shape: Rectangular
 - Size: 762 long x 697 width mm

Measured System Parameters during normal, steady state conditions:
- Input Power: 208 VAC
- Input Current RMS: 18.13 A RMS
- Power Factor: 0.60
- Voltage Total Harmonic Distortion (THD): 3.3%
- Current Total Harmonic Distortion (THD): 114.3%
- Wireless Power Transfer Operation:
 - Operating Frequency (MHz): 18 - 20 kHz (variable)
- DC Output Power into On-Board Charge Module:
 - Output Voltage: 215 VDC
 - Output Current: 18.1 A
 - Output Voltage Ripple Factor: 0.70 %

Operating Temperature after 4.0 hours at 3.0 kW output:
- Parking Pad: max observed surface temperature 51 °C
- Vehicle Adapter: max observed surface temperature 48 °C

2. Test conducted at nominal conditions (3.0 kW output, 100mm coil gap, coils aligned) unless otherwise specified

http://avt.inel.gov/evse.shtml
Fact Sheet: Wireless Charger Bench Test Results

Plugless™ Level 2 EV Charging System (3.3 kW) by Evatran Group Inc.

Results from laboratory testing off-board the vehicle:

- **System input Voltage operating Voltage**: 208 to 240 VAC
- **Circuit Breaker Rating**: 30 A
- **nominal gap between coils**: 70 mm
- **Rated maximum power output**: 3300 watts

System Specifications:

- **Shape**: Approximately Circular
- **Size**: 559 dia. x 470 long mm
- **Vehicle Adapter (Secondary Coil system)**: Rectangular
- **Size**: 762 long x 487 wide mm

Measured System Parameters during nominal, steady state conditions:

- **Input Power**: 200 VAC
- **Input Current RMS**: 28 Amps RMS
- **Power Factor**: 0.60
- **Voltage Total Harmonic Distortion (THD)**: 5 %
- **Current Total Harmonic Distortion (THD)**: 13 %

Wireless Power Transfer System:

- **Operating Frequency (kHz)**: 15 - 20 kHz (variable)
- **DC Output Power (into programmable DC electronic load)**
 - **Output Voltage**: 215 VDC
 - **Output Current**: 35 A Amps
 - **Output Voltage Ripple Factor**: 0.76 %

Operating Temperature:

- **Parking Pad: Max observed surface temperature**: 51 °C
- **Vehicle Adapter: Max observed surface temperature**: 48 °C

Magnetic Field Test:

- **Primary Coil: position relative to Secondary Coil**
 - **Primary Coil position (%)**: 87.3 %
 - **Secondary Coil: position (%)**: 88.9 %

Electric Field Test:

- **Electric Field Measurement: 0.1m from center of the Secondary Coil**
 - **Electric Field: 3.1 kW Output Power**
 - **Field (V/m)**: 6.03 V/m
 - **Electric Field: 3.8 kW Output Power**
 - **Field (V/m)**: 7.18 V/m

System Efficiency:

- **System Efficiency at Various Output Power**

Additional Information:

http://avt.inel.gov/evse.shtml
Charger Power Quality

- Power Quality evaluated across range of charge current for Level 1 and Level 2
 - Efficiency
 - Power Factor
 - Total Harmonic Distortion

- This negatively impacts the grid during a demand response curtailment
 - Efficiency decreases
 - Power Factor decreases
 - Distortion on Current increases

- Figures on right are results from
 - 2012 Chevy Volt

Battery Test Center at Idaho National Lab
Battery Assessment at INL

• Independent, science-based performance assessment of energy storage devices
 - Environmental control
 - Software analysis tools for data analysis and reporting.
 - Standards developed for data acquisition, analysis, quality, and management.

• Protocols & Procedures
 - Internationally accepted manuals for performance assessment of energy storage systems.

• Quality Results
 - Flexible state-of-the-art energy storage test facility capable of supporting current and future development activities.
 - Rigorous NIST traceable calibration procedures for in depth uncertainty analysis
 - Temperature controlled testing for reliable and repeatable results.
Battery Test Manuals

• Recently Published Manuals:
 – Battery Test Manual for Plug-In Hybrid Electric Vehicles (Sept. 2014)
 – Battery Test Manual for 12V Start/Stop Vehicles (Nov. 2013)

• Manual Revisions ongoing:
 – EV Manual, Revision 3

INL Battery Test Center Facilities and Equipment

- Over 500 items tested per year
- ~20,000ft² lab space
- 671 cell test channels
- 27 module test channels
- 7 pack test channels
- ~100 controllable thermal chambers
- Vibration test system

http://www.caesonline.org/ESL/Battery%20Lab.html
Summary

- **INL Advanced Vehicle Testing & Analysis is a DOE Core Capability for advanced automotive technologies**
 - INL has accumulated 232 million miles (373 million km) and 44,300 AC MWh from 27,400 electric drive vehicles and 17,000 charging units

- **Advanced energy storage**
 - Performance Science analysis of Li-ion Batteries from half-cell to vehicle and back

- **Plug-in electric vehicles**
 - Continued testing and analysis of plug-in vehicles
 - Big-Data analysis of vehicle usage
 - Connected Automated Vehicles

- **Infrastructure**
 - Wireless Charging & Level I, II, III – standardization, energy & efficiency
 - Big-Data analysis of infrastructure usage
 - Cyber security

- **Additional Vehicle Testing**
 - Advanced climate control, power electronic, and other ancillary and accessory systems technologies
 - Advanced internal combustion engines (CNG/Turbocharged Direct Injection Diesel)
Tech to Market Workshop at INL

Evening Industry Reception
May 18, 2015

T2M Workshop
May 19 - 20, 2015
Idaho Falls, ID

Directing dialogue on the high quality, detail oriented validation needed to improve the efficient transfer of energy storage technology to the market.