DC Fast Charger Fact Sheet: ABB Terra 53 CJ charging a 2015 Nissan Leaf

Description

Testing of the ABB DC fast charger was conducted to quantify its steady-state operational performance characteristics during a single charge of a 2015 Nissan Leaf using the CHAdeMO connector.

DC Fast Charger Specifications

Input Power

480 VAC $3 \phi+/-10 \%$
50 or 60 Hz
75A RMS maximum

Output Power

CHAdeMO connector
50 kW maximum
120 A DC maximum
10' cable length

J1772 - CCS connector
50 kW maximum
125 A DC maximum
10' cable length

Interfaces

Touch screen Interface GSM / CDMA modem 10/100Base-T Ethernet

Vehicle Specifications

2015 Nissan Leaf

equipped with CHAdeMO DC fast charge inlet
For more information go to
https://avt.inl.gov/vehicle-make/nissan

Testing Information

Electrical Measurement Points

AC Input: DC Fast Charger 3-phase inputs measured at input terminal block
DC Output: DC Fast Charger DC output measured at the CHAdeMO vehicle inlet
Power Meter: Hioki 3390

Source Power Characteristics During Charge

Nominal frequency
Nominal voltage magnitude
Max. deviation from nominal frequency
Max. deviation from nominal voltage magnitude
Max. voltage total harmonic distortion (THD)
Max. voltage phase unbalance

60 Hz
480 VAC 3申
0.09\%
1.37\%
2.28\%
0.30\%

DC Fast Charger Fact Sheet: ABB Terra 53 CJ charging a 2015 Nissan Leaf

Test Results: Standby Power

Standby Power Operation

AC power prior to charging
AC power at charge completion
AC power 5 minutes after charge completion
Test Results: Vehicle DC Fast Charging
Total energy transferred during charge event
Maximum measured power
Maximum measured current

Constant Current Mode

DC current
Average AC to DC Efficiency
Avg. Power Factor
Avg. Current THD
Avg. Phase Current Unbalance

99 watts
150 watts (cooling fan operating) 110 watts

AC Input	$\underline{\text { DC Output }}$
20.1 kWh	18.5 kWh
49.7 kW	45.9 kW
64.4 A RMS	116.5 A DC

Constant Voltage Mode

DC voltage	397 V DC
Range of Efficiency	79.8% to 92.8%
Range of Power Factor	-0.50 to -0.990
Range of Current THD	9.3% to 30.7%
Range of Current Unbalance	0.02% to 2.1%

DC Fast Charger Fact Sheet: ABB Terra 53 CJ charging a 2015 Nissan Leaf

Input Current Total Harmonic Distortion (THD)

DC Fast Charger Fact Sheet: ABB Terra 53 CJ charging a 2015 Nissan Leaf Input Current and Input Voltage Phase Unbalance

 Input Current Harmonics: at 50kW 3-phase Input Power

 Input Current Harmonics: at 11kW 3-phase Input Power

DC Fast Charger Fact Sheet: ABB Terra 53 CJ charging a 2015 Nissan Leaf Definitions:

Efficiency - Efficiency is the useful power output divided by the total power input. In order to minimize the total amount of energy needed to complete a given task it is desirable for the efficiency to be as close to 100% as possible.

Power Factor - In the presence of a stiff voltage source, power factor is a measure of how much of the current is being utilized to perform work. Since the electrical infrastructure is limited in the amount of current it can deliver, power factor is a way to determine how efficiently the electrical infrastructure is being utilized. Ideally the power factor should be as close to 1 as possible.

Total Harmonic Distortion (THD) - In power systems, the voltage and current waveforms are both 60 Hz sinusoidal waveforms. The total harmonic distortion (THD) is a measure of the amount of distortion that is present in the sinusoidal wave form. Excessive amounts of THD in current wave forms can cause many problems in a power system such as overheating transformers, motors, and capacitors among other things. Ideally the THD should be as close to zero as possible.

Phase Unbalance - In a balanced three phase system the individual phases of a three phase voltage or current source have the same magnitude and are 120 degrees out of phase with each other. When a system is not balanced it is said to be unbalanced. The voltage and current unbalance in these test results were calculated using the following equations (from the Hioki 3390 Power Analyzer Instruction Manual).

Current Unbalance

$$
\begin{gathered}
\operatorname{Iun}_{123}=\sqrt{\frac{1-\sqrt{3-6 \beta}}{1+\sqrt{3-6 \beta}}} \times 100 \\
\beta=\frac{I_{12}^{4}+I_{23}^{4}+I_{31}^{4}}{\left(I_{12}^{2}+I_{23}^{2}+I_{31}^{2}\right)^{2}}
\end{gathered}
$$

I_{12}, I_{23}, and I_{31} are fundamental rms currents (between lines)

Voltage Unbalance

$$
\begin{gathered}
\text { Uunb }_{123}=\sqrt{\frac{1-\sqrt{3-6 \beta}}{1+\sqrt{3-6 \beta}}} \times 100 \\
\beta=\frac{U_{12}^{4}+U_{23}^{4}+U_{31}^{4}}{\left(U_{12}^{2}+U_{23}^{2}+U_{31}^{2}\right)^{2}}
\end{gathered}
$$

U_{12}, U_{23}, and U_{31} are fundamental rms voltages (between lines)

