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ABSTRACT

The Idaho National Engineering and Environmental Laboratory has been
performing tests of high-power batteries for application in electric and hybrid
vehicles for various development programs since 1983.  The parameters
important to these tests are either directly measured or derived from the direct
measurements. The program managers of the sponsoring programs expressed a
need to understand the confidence that could be placed in the results of this
testing, thus the uncertainty of the parameters was investigated. This report
summarizes the INEEL high-power battery testing process and presents the
complete derivation of uncertainty for every parameter of interest.

This uncertainty study addresses the derivation of the analytical
expressions for both the measured and derived parameters as well as the
calculated uncertainty values. Since the calculated values are hardware specific,
the study has been separated into multiple volumes to facilitate presentation of
the information. Volume 1 summarizes the INEEL high-power battery testing
process and presents the complete derivation of uncertainty for every measured
and derived parameter of interest. A separate volume will be issued addressing
the various test stations used at the INEEL and will present the actual uncertainty
values associated with each.
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Uncertainty Study of INEEL EST Laboratory
Battery Testing Systems

Volume 1
Background and Derivation of

Uncertainty Relationships
1. INTRODUCTION

1.1 Background of the Energy Storage Testing Laboratory
Battery Testing Program

The Energy Storage Testing (EST) Laboratory at the Idaho National Engineering and
Environmental Laboratory (INEEL) was established in 1983 for testing full-size electric vehicle batteries
in support of the U.S. Department of Energy�s (DOE�s) Electric and Hybrid Vehicle Program. The
laboratory�s original mission was later expanded to include other types of energy storage and conversion
devices, though battery testing remains its principal focus. Presently, the laboratory serves as an
independent test facility for testing hybrid vehicle battery technologies in various development programs.
These include the DOE-sponsored Advanced Technology Development (ATD) Program, which seeks to
improve the electrochemical performance of lithium ion cells, and the Partnership for a New Generation
of Vehicles (PNGV) Program (now being replaced by the FreedomCAR Program), which is jointly
sponsored by DOE and U.S. automobile manufacturers. The spectrum of devices tested for these
programs ranges from small research cells to full-size battery systems, using one of several
electrochemical technologies such as lithium ion, lithium polymer, or nickel metal hydride. The common
element for this testing is that all these batteries are designed to provide very high power levels relative to
their weight and volume, with only modest energy requirements compared to conventional electric
vehicle requirements.

1.2 Structure of This Report

Because the INEEL EST Laboratory performs testing on a continuous basis, access to battery test
stations for this study was limited to times when the various testers could be used without programmatic
impact on work in progress. As a result, the testing parts of the study are necessarily performed over an
extended period. Consequently, the report documenting the measurement uncertainty study is being
published in multiple volumes, as the test data and subsequent analysis results become available.

This first volume of the overall report describes the INEEL high-power battery testing process and
the general accuracy specifications of the various types of battery test stations considered in the study.
The primary technical content of this volume is a derivation of the relationships for determining
measurement uncertainty using some combination of manufacturer�s specifications and confirmatory
testing. These are derived first for generic parameters and then for the specific parameters of interest to
INEEL battery testing. Specific parameters include both directly measured variables (temperature,
current, and voltage) and the various parameters that are indirectly derived from them for the PNGV and
ATD testing programs. These relationships provide the key for all subsequent measurement uncertainty
analysis, and they can be applied to any similar measurement process as required. A derivation of the
potential measurement uncertainty effects of signal aliasing is also included in this volume.
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No equipment-specific numerical results are included. The application of these relationships to
specific types of INEEL battery test stations will be documented in one or more subsequent volumes of
this report, which will describe their measurement uncertainty characteristics based on their design,
manufacturer�s specifications, and various experiments conducted to verify or supplement manufacturer�s
information.

Note that all relationships developed in this analysis (and subsequently applied in the following
volumes) are expressed in terms of a standard deviation and as such have a confidence level of about
67%. If a specific application requires a higher confidence level, then the appropriate adjustment factor
must be applied. For example, a factor of two (i.e., two standard deviations) is commonly used to give a
95% confidence level, though even higher values are sometimes necessary for truly critical applications.

1.3 Overview of the High-Power Battery Testing Process

The ATD and PNGV programs have defined slightly different approaches to battery testing. This is
largely due to the fact that ATD is a research-oriented program, and PNGV aims to make use of available
commercially viable battery designs in a multiphase development process. As a result of these
orientations, the ATD program is conducted largely within the DOE national laboratories. The PNGV
program contracts all its development effort to commercial battery manufacturers, with INEEL providing
independent testing to verify the contractor�s progress and results. Many of the elements of the battery
testing process are the same for both programs. The largest difference is that the ATD program is
interested primarily in relative improvements in performance, while PNGV is concerned with whether the
technologies it sponsors will be able to meet its performance goals.

In either case, the primary focus of high-power battery testing for hybrid vehicle applications has
traditionally been on power performance, though there are a number of other factors that are also very
important. The nature of hybrid vehicle design is such that many of these factors interact, i.e., improving
one of them often leads to compromising one or more of the others. As a result, the PNGV program is
designed around a set of interrelated goals derived from vehicle requirements and constraints. All of these
goals are intended to be satisfied simultaneously by a successful battery. The associated PNGV testing
process uses custom test procedures to measure various aspects of battery performance for direct
comparison with these goals.a These procedures typically subject a device under test to a prescribed
sequence of controlled current, power, or voltage steps, each lasting from a few seconds to an hour or
more. The ATD program has also adopted many of these procedures (or variants of them) as useful means
for comparing high-power cell performance.

Many of the battery performance results important to these programs are not directly measured as
simple parameters. Instead, they must be calculated from the results of various time-based measurements
made under particular test conditions. The program managers of the sponsoring programs expressed a
need to understand the confidence that could be placed in the results of this testing, specifically with
respect to the uncertainty of the reported results. This concern led directly to the measurement uncertainty
evaluation detailed in this report.

                                                     

a. See the PNGV Battery Testing Manual, Revision 3, DOE/ID-10597 (published February 2001) for a description of these test
procedures and the PNGV program goals on which they are based.
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1.4 Parameters Important to ATD and PNGV Testing

This section defines the parameters important to INEEL hybrid vehicle battery testing, so that the
measurement uncertainty expressions to be developed can be understood in context. They are divided into
two groups: directly measured parameters (which are typically not of interest for themselves) and the
various parameters derived from these fundamental measurements. The PNGV goals are defined for
full-size battery systems, but most PNGV and ATD testing is done on single-cell devices. The results of
cell testing are extrapolated to full-size batteries, and some system-level parameters of concern (such as
thermal control system losses) are not treated in this report.

1.4.1 Measured Parameters

For a single-cell device, only three fundamental measurements are typically made as functions of
time over a prescribed test sequence: the temperature of the cell and the terminal voltage and current
during the various load conditions imposed on the cell.

Cell temperature itself is not a goal parameter (except for the ability to operate over a defined
temperature range), but cell performance of high-power batteries can vary dramatically with temperature.
Most cell testing is done in test chambers at ambient temperature (typically 25 to 30°C), and accurate
control of temperature is critical to repeatable results. Additionally, the characterization of temperature
effects on cell performance requires accurate measurement of the device temperatures during tests
conducted at higher- or lower-than-normal temperatures.

All three of these parameters are typically measured at periodic intervals during a battery test
sequence, though the measurement rate may be different during different parts of the sequence.

1.4.2 Derived Parameters for High-Power Battery Testing

Batteries are robust energy storage devices whose use may involve time responses from near steady
state to fractions of seconds. Various parameters of battery performance are derived for the ATD and
PNGV programs from the fundamental measurements of current and voltage made during specific test
sequences, i.e., under transient conditions. These parameters have somewhat generic names, but they (and
their units) are defined in the context of these programs and this report, as follows.b

1.4.2.1 Power. Battery Power is the instantaneous product of current and voltage and is typically
expressed in watts. Battery voltage is always positive, but current can flow either out of the battery
(during discharge) or into the battery (during charge), so power can be either positive or negative. Battery
testers typically perform this calculation internally and report the result as measured data, though it is
usually not �measured� in the sense that it is derived from the output of an actual power sensor. In some
cases, power must be calculated externally from the measured values of current and voltage. The ability to
do this usefully for step (pulse) test profiles can critically depend on the extent to which the current and
voltage measurements are made at the same time. Careful design of battery test time profiles is required to
ensure that the time resolution of transient measurements is always adequate.

                                                     

b. Expressions used for calculating these parameters are shown in the equations presented in Section 3.2.
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1.4.2.2 Capacity. Battery Capacity is a measure of [net] charge removed from a battery, defined as
the integral of battery current over time during some prescribed test sequence.c,d Capacity is typically
expressed in ampere-hours (A·h).e Battery testers commonly perform this integration internally (typically
as a numerical integration) and report the result as measured data, though it can also be calculated
externally if a sufficient number of data points are available.

1.4.2.3 Energy. Battery Energy is a measure of the energy removed from or added to a battery,
defined as the integral of battery power over time under some prescribed test sequence. Energy is
typically expressed in watt-hours (W·h). Battery testers commonly perform this integration internally
(typically as a numerical integration) and report the result as measured data, though it can also be
calculated externally if a sufficient number of data points are available.

1.4.2.4 Source Impedance. Source Impedance, expressed in ohms (Ω), is a measure of the
apparent relationship between battery terminal voltage (V) and battery load current (I) over a selected
portion of a particular test step, which is commonly a constant current pulse several seconds in duration.
It is calculated for a test pulse as Source Impedance = ∆V/∆I, where ∆V and ∆I are respectively the
change in voltage resulting from the change in current over some or all of the test pulse. The test pulse is
commonly preceded by an open-circuit condition. The sign of battery current is defined such that this
quantity is always positive.

1.4.2.5 Efficiency. Battery Round-Trip Efficiency is the ratio of discharge energy to charge energy
(expressed as a percentage) over a specific test sequence where the initial and final battery
states-of-charge are identical. This test sequence is typically one or more pulse �profiles� (sequences of
discharge and charge steps) controlled such that the discharge capacity removed is equal to the charge
capacity returned during each profile.

1.4.2.6 Self-Discharge. Battery self-discharge is the amount of battery energy lost [typically
expressed in watt-hours per day (W·h/d)] during a fixed time period when the battery is stored in an
open-circuit condition. It is calculated from the results of two nearly identical tests, each of which
discharges the battery at a constant current rate from a fully charged state to a minimum terminal voltage.
The tests differ only in that the second test is interrupted at an intermediate state, where the battery is
allowed to stand in an open-circuit state for a period of (nominally) seven days before the discharge is
resumed. The difference between the battery discharge energy values measured during the two tests is
considered self-discharge.

1.4.2.7 Pulse Power Capability. Pulse power capability is a calculation of the maximum power
[typically expressed in watts (W)] that can be delivered or accepted by a battery at a given
depth-of-discharge for a prescribed time without exceeding prescribed voltage limits. It is calculated from
voltage measurements taken before and during (and sometimes after) execution of a current pulse, along
with current measurements taken before and during the pulse.

                                                     

c. Note that the term charge is used in this sense only in this definition. Elsewhere in this report, charge refers to the act of
adding capacity to a battery, while discharge similarly refers to removing capacity.

d. Common test sequences include constant-current or constant-power discharge to a prescribed minimum terminal voltage,
though both capacity and energy are commonly measured during part or all of various step (pulse) test sequences as well.

e. One ampere-hour is 3600 ampere-seconds (A·s), or 3600 coulombs (C).



5

1.5 General Functional Description of a
Battery Test and Measurement System

The high-power battery test systems used at the INEEL are made by a number of different
manufacturers and include a wide range of voltage, current, and power capabilities. Some are designed to
test a single battery, while others are capable of testing 16 or more cells simultaneously. However, most
share a number of common characteristics relevant to measurement uncertainty considerations. This
frequent changes between these states. Depending on the test to be performed, it may be necessary to
maintain a constant current, voltage, or power level at the battery terminals in either the discharge or
charge state. To accomplish this, the tester typically measures these parameters for control purposes.

Additionally, the values of these parameters (along with battery temperature and other variables)f

must be measured and recorded for later calculation of the parameters of interest, such as those described
in Section 1.4.2. This can be done using an external data acquisition system, but most battery test stations
at the INEEL also provide this data measurement and logging function. The advantage of this integrated
control and measurement approach is that the recorded data can be easily synchronized to the test
sequence. Most testers report the test program step as part of the recorded data, and data acquisition
section describes a generic �battery test station.� Specific information about the test systems treated in
this report is presented in subsections below.

A battery test station (often referred to as a tester) is a device that applies controlled conditions to
the terminals of a battery under test and measures the resulting battery response. Figure 1 is a simple
diagram of such a test station, showing its connections to the battery to be tested. All the batteries of
interest for hybrid vehicle use are rechargeable, and vehicle operation involves alternating periods of
discharge and charge. Thus, a tester is required to act both as a controlled load under battery discharge
conditions and a controlled source of power and energy under battery charge conditions, potentially with
sampling intervals can usually be varied for each step. Most test stations acquire data at a (relatively high)
fixed rate for control purposes and record these data at programmable (typically lower) rates specified by
the user.

As indicated in Figure 1, battery current is typically measured using a dc shunt in series with the
device under test (though the shunt is often internal to the test station and not accessible for outside
measurements). Voltage is preferably measured directly at the battery terminals to avoid errors from line
losses at the high currents required.

1.5.1 The Specific Types of Testers Involved in the Study

This study characterizes the measurement uncertainty of test stations built by four manufacturers
for the INEEL. Some of these testers (Energy Systems and Bitrode) were custom-built for the INEEL,
while others are off-the-shelf equipment representative of the manufacturer�s products at the time they
were built. Table 1 lists the number and type of testers (for each manufacturer) currently in use at the
INEEL, with their full-scale voltage and current measurement and control ranges. Because of the wide
variety of operating ranges for the various Maccor testers, only a representative example is treated in this
report. In general, the various Maccor models have similar specifications, and the design of their
measurement systems is largely unchanged over the several years separating the oldest and newest
models.

                                                     

f. For multicell batteries, individual cell or module voltages and temperatures are commonly recorded in addition to the overall
measurements.
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Other sensors Data

Data
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Battery
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Battery voltage (+)
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Battery voltage (-)
Data
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Battery current (-)

Figure 1. Generic battery test station.

Table 1. INEEL tester types and ranges (as of January 2001).
Tester

Manufacturer
Number of

Tester Units
Number of

Test Channelsa
Full-Scale Voltage

(V)
Full-Scale Current

(A)
AeroVironment
Model ABC-150

2 2 530 500 (parallel)
250 (independent)

Energy Systems 3 1 500 500b

Bitrode 4 1 100 500
Maccor 1 1 5

2
1

20
100
100

12.5
5

50
Maccor 2 1 16

8
20
5

12.5
50

Maccor 3 1 8 5 5
Maccor 4 1 8 5 0.5c

Maccor 5 1 8 5 100
Maccor 6, 7 2 7 or 8 5 250
Maccor 8, 9, 10 3 24 10 12.5
Maccor 11 1 8 30 100
Maccor 12 1 4 65 250
Maccor 13 1 8 5 250

a. This corresponds to the number of devices that can be tested simultaneously and independently with a given piece of
equipment. It has no relationship to the number of measurement channels provided for each device under test.
b. Energy Systems 1 is limited to ~437 A, but with a 500-A measurement range. All three units can be reconfigured for several
(lower) voltage and current ranges.
c. Full-scale range can be adjusted down.
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1.5.2 Manufacturers’ Claims of Accuracy for the Testers

1.5.2.1 Maccor Testers.

Measured parameters: Voltage, current, temperature

Resolution of digitizer: Sixteen bits

Sample rate: adjustable: One hundred samples per second (sps) maximum

Anti-aliasing filter: Temperature, first order, 1.41 Hz
Voltage and current, none

Accuracy: 0.5°C repeatability, 2.5°C algorithm (original, software now
modified to <1°C)
0.02% of full-scale repeatability for voltage and current

Measurement channels: Model dependent (typically voltage and current with auxiliary
channels assignable for temperature and voltage)

Measurement range: Temperature range is variable, depending on test needs
Voltage and current are model dependent (see Table 1)

Calibration: By procedure, with external reference and measurement

1.5.2.2 Energy Systems Testers.

Measured parameters: Voltage, current, temperature

Resolution of digitizer: Twelve bits over +/- 5 Vdc

Sample rate: adjustable: Ten sps maximum

Anti-aliasing filter: Temperature, voltage, current: third order, 4.0 Hz

Accuracy: 0.5°C repeatability, high-order polynomial algorithm
0.025% of full-scale repeatability for voltage and current

Measurement channels: Three primary (voltage, temperature, current) and 59 universal
(voltage, temperature or current)

Measurement range: Temperature dependent on signal conditioning module, but most
often 0 to 900°C
Voltage, current primary channel: 0 to 500 Vdc, 0 to 500 A (see
Table 1).
Auxiliary Channels +/-5 Vdc, (including current via external
shunt or temperature via various signal conditioning modules)

Calibration: By procedure, with external reference and measurement
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1.5.2.3 Bitrode Testers.

Measured parameters: Voltage, current, temperature

Resolution of digitizer: Twelve bits

Sample rate: adjustable: Ten sps maximum

Anti-aliasing filter: Unknown

Accuracy: 0.5°C repeatability, algorithm unknown
0.01 V dc, 0.1 A repeatability for main voltage and current
0.01 V dc for cell voltage
0.001 V dc for auxiliary channels

Measurement channels: Main voltage and current, cell voltage, auxiliary voltage,
temperature

Measurement range: Temperature: -4 to 200°C
Voltage, current main channel: 0 to 100 Vdc, 0 to 500 A
Cell voltage +/-25 Vdc
Auxiliary channels: 0 to 5 Vdc

Calibration: By procedure, with external reference and measurement

1.5.2.4 AeroVironment Testers.

Measured parameters: Voltage, current

Resolution of digitizer: Twelve bits

Sample rate: adjustable: Four sps maximum

Anti-aliasing filter: Unknown

Accuracy: Voltage: +/-250 mV
Current (independent or differential): +/-200 mA or 0.25% of
reading (whichever is greater)
Current (parallel): +/-350 mA or 0.5% of reading (whichever is
greater)

Measurement channels: Voltage, current

Measurement range: Voltage, current (independent mode): 8 to 420 Vdc, +/-265 Adc
Voltage, current (parallel mode): 8 to 420 Vdc, +/-530 Adc
Voltage, current (differential mode): +/-420 Vdc, +/-265 Adc

Calibration: Calibration check only by procedure, with battery-powered DVM
and external shunt for current
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2. UNCERTAINTY RELATIONSHIPS FOR MEASURED PARAMETERS

This section examines the theory that determines the error or uncertainty in sensing physical
parameters that are electronically measured and processed by a digital data acquisition system for battery
testing.

2.1 Basic Relationships

For the battery test systems described in Section 1, the typical measured parameters are voltage,
current, and temperature. The evaluation approach is the same for any of these parameters, with minor
exceptions. Consider the typical parameter denoted by Ρ. Figure 2 shows a block diagram for the
measurement channel of parameter Ρ.

Figure 2. Diagram for typical measured parameter data acquisition.

Parameter Ρ digitized output is what the data system receives. That is not necessarily the final
result. In most cases, the data system processes the data with some software algorithm to perform
engineering units conversion. For example, with a digitizer of N  bits, the digitized output could be a
binary count ranging from 0  to ( )12 −N , and the desired output in engineering units might be 0 to
500 Vdc. In this case, the algorithm is likely a simple linear relationship. In another case, such as
temperature, the algorithm could be very complex, or perhaps it might be a look-up table. The uncertainty
evaluation must consider all sources of error, including data processing. When tests to evaluate
uncertainty are run, the test configuration basically implements Figure 2 with the signal source replaced
by a calibration source. The total error, TOTPerr%  for measured parameter Ρ, including the data
processing algorithm, and assuming that error sources are statistically independent and given as a
percentage of full scale,g is described by

=TOTPerr%

( ) ( ) ( ) ( ) ( ) ( ) ( )2222222 %%%%%%% ALGORALIASQUANTJFETDCAL errerrerrerrerrerrerr ++++++  (1)

where

CALerr% = error associated with the calibration source and process

TDerr% = error associated with the transducer (e.g., thermocouple or current shunt)

FEerr% = error associated with analog front-end electronics
                                                     

g. Commonly abbreviated as % FS.
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TJerr% = error associated with time jitter

QUANerr% = error associated with quantization, e.g.,

( ) bitsofNo.Nerr NQUAN =
−

×= ,
12

1100%

ALIASerr% = error associated with signal dynamics of sampled data, called aliasing

ALGORerr% = error associated with algorithm of engineering units conversion.

We define the equipment error, the error without calibration uncertainty or transducer uncertainty,
as

( ) ( ) ( ) ( ) ( )22222 %%%%%% ALGORALIASQUANTJFETOT errerrerrerrerrPeq ++++= (2)

It is possible to estimate some of the terms in Equation (1). For example, if the number of bits is
known, the quantization error, QUANerr% , is easily obtained as above. For the effect of time jitter, in the
worst case one could assume that the signal is at the maximum rate of change at the instant of sample.
Then, the time jitter times that maximum rate of change, referenced to full scale and expressed as a
percent, is the worst-case error. However, with the time jitter a small fraction of the sample period, and
for the applications of this system being limited to signals that have frequency content close to dc, the
assumption of neglecting this error is considered valid. The potential for aliasing errors is treated in some
detail in Section 2.2, and it will be examined further in later equipment-specific volumes of this report. In
most cases, it will be neglected on the assumptions that (a) test excitation and signal spectra will be kept
very near dc, and (b) the devices under test and test setups will minimize external noise pickup. The
engineering units conversion error, if knowledge of the algorithm is available, can be estimated. If it is a
simple linear relationship, it can be included in the calibration error. Additionally, the calibration error is
a combination of offset and sensitivity errors that are here considered lumped into the maximum error that
could occur at full scale. Equation (1) becomes Equation (3) with these latter three error sources removed
or combined:

( ) ( ) ( ) ( )2222 %%%%% TDQUANFECALTOT errerrerrerrPerr +++= (3)

The equipment manufacturer may provide a specification of the equipment error, TOTPeq% . If such
information is available, then Equation (4) applies:

( ) ( ) ( )222 %%%% TDTOTCALTOT errPeqerrPerr ++= (4)

2.2 Theory of Sampled Data Aliasing Analysis

This section explains in depth the aliasing error caused by sampling a time varying signal at an
insufficiently high sample frequency relative to the spectral content of the signal. The section also
develops the necessary relations required to quantify the aliasing error, ALIASerr% .

Transitioning signals from continuous signal space to discrete signal space via sampling to enable
digital data processing can lead to the possibility of aliasing. An aliased signal contains a special type of
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noise that corrupts the signal like any other noise. The following development will illustrate and quantify
aliasing noise. Consider a time varying signal, f(t), which has a Fourier transform, where

( )∫
∞

∞−

−= dtetfF tωj)ω( (5)

( ) ωω
2
1)( ∫

∞

∞−
π

= deFtf tωj .

Equation (5) is the standard Fourier transform pair. Consider another function of time, )(tS , which
is a periodic train of impulses that occurs at a time step of t∆ , where

( ) ( ) .δ tnttS
n

∆−= ∑
∞

−∞=

(6)

)(tS  is called the sampling function. Consider the product of )(tf and )(tS :

( ) ( ) ( ) ( ) ( )∑
∞

−∞=

∆−δ==
n

tnttftftSth

∑
∞

−∞=

∆−δ∆=
n

tnttnfth )()()( . (7)

Now consider the Fourier transform of Equation (7):

( ) ( ) ( ) dtetnttnfH tj

n

ω−
∞

∞−

∞

−∞=
∆−δ∆=ω ∫ ∑

( ) ( ) ( )∑ ∫
∞

−∞=

∞

∞−

ω−∆−δ∆=ω
n

tj dtetnttnfH

( ) ( )∑
∞

−∞=

∆−∆=ω
n

tnωjetnfH

( ) ( ) ( ) tetnftHG
n

tnj ∆∆=∆ω≡ω ∑
∞

−∞=

∆ω−  . (8)

Equation (8) is comparable to Equation (5). In fact, as the 0→∆tLimit , Equation (8) becomes
Equation (5). Now, consider Equations (5) and (8) evaluated at 0=ω :

( ) ( ) ttnfG
n

∆∆= ∑
∞

−∞=
0 , ∫

∞

∞−

= dttfF )()0(
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As the 0→∆tLimit , )0(G = )0(F . Now, consider 
t∆
π=ω 2 . Equation (5) becomes

( )∫
∞

∞−

∆
π−

=





∆

π dtetf
t

F
t

t
j 22

This is simply the Fourier transform evaluated at a specific frequency. Now, consider Equation (8)
at that frequency:

( ) tetnf
t

G
n

tn
t

j
∆∆=





∆

π ∑
∞

−∞=

∆
∆
π− 22 = ( ) ( )0

1

2 Gtetnf
n

jn =∆∆∑
∞

−∞=

π−
321  .

The response is back to dc, and it appears periodic. Consider ( ) 




 ω∆+

∆
πω∆
t

GandG 2 :

( ) ( ) tetnfG
n

tnj ∆∆=ω∆ ∑
∞

−∞=

∆ω∆−

( ) ( ) teetnftetnf
t

G
n

jnj

n

tn
t

j
∆∆=∆∆=





 ω∆+

∆
π ∑∑

∞

−∞=

∆ω∆−π−
∞

−∞=

∆



 ω∆+

∆
π

−
tn)(

1

)2(
2

2
43421  = ( )ω∆G

It is in fact periodic. Now consider ( ) 




 ω∆−

∆
πω∆−
t

GandG 2 :

( ) ( ) tetnfG
n

tnj ∆∆=ω∆− ∑
∞

=

∆ω∆

0

( ) ( ) ( ) teetnftetnf
t

G
n

jnj

n

tn
t

j
∆∆=∆∆=





 ω∆−

∆
π ∑∑

∞

−∞=

∆ω∆π−
∞

−∞=

∆





 ω∆−

∆
π−

tn)(

1

2
2

2
321  = )( ω∆−G  .

This means that the complete spectrum must consider negative frequency, and it is periodic at the
sample frequency. Figures 3, 4, 5, and 6 illustrate the nature of the waveforms of the sampling process.

As seen in the spectrum of the sampled f(t), a perfect low-pass filter can recover the �fundamental,�
which has the identical shape as the pure spectrum of f(t). Observe the frequency halfway between dc and

the sample frequency 






∆
π=ω
tn . If there is no spectral content beyond this frequency, a perfect low-pass

filter will capture 100% of the spectral content of the original signal spectrum. Thus, with an inverse
Fourier transform operation, f(t) can be completely recovered. Now, if the signal has spectral content
beyond nω  (the Nyquist frequency), then a low-pass filter cannot recover the original spectrum but will

          
Figure 3. Time signal f(t). Figure 4. Sampling function S(t).
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Figure 5. Frequency spectrum of f(t). Figure 6. Spectrum of sampled signal.

instead recover a spectrum that consists of the original corrupted with some of the tail from the first
harmonic spectrum. This corruption is called aliasing noise. Figure 7 illustrates this effect.

The effect of this is introduction of noise into the recovered signal. The effect can be quantified.
The convention for noise analysis is signal power compared to noise power. Signal power is power in the
signal up to the Nyquist frequency. Noise power is the power in the overlapping tail or the power in the
signal power spectrum from the Nyquist frequency to ∞ . The power spectrum is the signal spectrum
times its complex conjugate (replace every j by -j) denoted by F*. The units of signal spectrum are
assumed as volts/Hz. If a 1-ohm load is also assumed, the resulting power spectrum has units of
watts/Hz2. Additionally, the spectrum is assumed symmetrical with negative frequency, and thus the
integration to obtain power need only be performed over positive frequency.

( ) ( )∫≡
n

dFFPower Signal
ω

0
ωω*ω (9)

( ) ( )∫
∞

≡
n

d*FFPowerNoise
ω

ωωω (10)

Note that the relationship between signal power (or energy) in the time domain and the frequency
domain is defined by Parseval�s relationship:

( )∫∫
∞

∞−

∞

∞−
π

= ωω
2
1)( 22 d Fdt tf  .

Figure 7. Fundamental spectrum contaminated by the first harmonic.
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The aliasing error, ALIASINGσ  is given by

powersignal
powernoise

ALIASING =σ ,     .100% ALIASINGσ=ALIASerr (11)

To perform an analysis of aliasing, the approach is as follows. A typical data acquisition system
has in its signal path an antialiasing low-pass filter. Figure 8 shows a block diagram of the typical front
end of a sampled data system. If one assumes that the signal is white noise, the signal spectrum is then the
transfer function (in terms of j ω) of the antialiasing filter, ( )ωH . Equations (9), (10), and (11) are
applied and the error computed. Because the power spectrum of most low-pass filters will cause
Equations (9) and (10) to become a very messy integration, a numerical approach should be pursued with
software such as Matlab or custom code. In the numerical integration, it is not necessary or practical to
integrate to infinity. Instead, the upper limit of integration can be set to nω10 and then repeated using

nω20 . If there is no significant change, then either value is adequate as the upper limit. If there is a
change, the upper limit can be increased until there is no significant change.

Figure 8. Diagram of a typical data acquisition system.

2.3 Analytical Relationships for Evaluation Testing

In evaluating system uncertainty, testing is an important tool, as it enables a reality check for the
system under evaluation. The testing, if it is thorough, representative, and with statistically adequate
sample sizes, can be the sole basis for the system uncertainty. More often, testing will be part of the
process of the evaluation. It will help establish typical system uncertainty performance. The complete
uncertainty evaluation will include operational experience, the system manufacturer�s data, and testing.
The following analysis allows the system evaluator to obtain the needed degree of testing for the
uncertainty evaluation.

Consider a test where large steady-state time records of parameter Ρ data, spread over the
parameter�s range, are collected for multiple measurement channels and statistically processed. The
number of channels used and the number of steps taken over the parameter range are as required to obtain
the desired confidence level of the statistical results. The steady-state signal source for the test eliminates
the aliasing error term. Additionally, assume that during the calibration process for this test, an end-to-end
calibration is performed such that uncertainty of a transducer is eliminated. Consider that the time records
of data at specific range levels are processed to find the mean [Equation (12)] and the standard deviation
[Equation (13)]. These relations will apply at a specific range level.
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∑
=

=
N

i
jkijk P

N
P

1

_ 1 (12)

∑
=






 −

−
=

N _

jkjkiPjk PP
N

σ
1i

2

1
1 (13)

where

N = the total number of time samples

i = the time sample index integer

j = the index integer for a specific channel number

k = the index integer for range

FS = the full-scale value of P for the measurement process under evaluation.

The results of the application of Equations (12) and (13) are functions of range level and channel
number. Additionally, Equation (14) defines an error for the averaged measured parameter jkP . It also is
a function of range level and channel number.

.100%
FS

PReferenceP jk

_

k
jkERR

−×= (14)

Referencek in Equation (14) may be a calibration standard or set point for that specific range level.
The parameters given by Equations (13) and (14) are averaged over the various specific range levels and
the number of channels. Parameter jkERRP%  is averaged as stated and illustrated by Equation (15). The

result is ERRP% , the average offset error as a percentage of full scale:

∑ ∑=
M

Chanj

L

Levels
Rangek

jkERRERR P
LM

P
# #

%11% (15)

where

M = number of channels tested

L = number of range levels tested for each channel.

Note that this kind of error is systematic and as such could possibly be corrected. However, we will
assume that this is not practical. Additionally, we will assume that this error is statistically independent of
any other error sources.

The standard deviation Pjkσ  is also averaged as stated and illustrated by
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∑ ∑σ=
M

Chanj

L

Levels
Rangek

PjkSTD LMFS
Perr

# #

11100%  . (16)

The error parameters STDERR
_

PerrandP %%  derived from testing are assumed statistically
independent of each other. The resulting estimate of the equipment error based upon testing is given by

( ) ( ) ( )222 %%%% CALERRSTDTOT errPPerrPeq −+= (17)

where

CALPerr% = the calibration process error for this testing; as a conservative assumption this is
set to zero

TOTPeq% = the uncertainty component for the equipment error for this measurement.

The uncertainty TOTPerr%  of a measurement of parameter Ρ, using the testing results, is given by

( ) ( ) ( )222 %%%% TDCALTOTTOT errerrPeqPerr ++= (18)

where

TOTPerr% = uncertainty of parameter Ρ as a percentage of FS

CALerr% = average uncertainty of the calibration process performed for the measurement (as
a percentage of FS).

TDerr% = uncertainty of the transducer for parameter Ρ as a percentage of FS.

Observe that Equation (18) is identical to Equation (4) and forms the basis of comparing the
uncertainty evaluation obtained via testing with the manufacturer�s specified uncertainty. If testing was
not done, and the equipment supplier provides a specification for TOTPeq% , Equation (18) can still be
used. If the equipment supplier has not provided a specified uncertainty, the general relationship for
uncertainty in Equation (2) relates the uncertainty to typical errors of a data acquisition system, which
must be obtained by analysis or estimation. Equation (2) can be reduced to Equation (19) by removing
time jitter and aliasing error sources, which are neglected in further analysis:

( ) ( ) ( )222 %%%% ALGORQUANFETOT errerrerrPeq ++= (19)

where

FEerr% = error associated with analog front-end electronics
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QUANerr% = the quantization error expressed as a percentage of FS, e.g.,

( ) BitsofNo.Nerr NQUAN =
−

×= ,
12

1100%

ALGORerr% = error associated with algorithm of engineering units conversion.

2.4 Application to System Measurements

2.4.1 Temperature Measurement

An evaluation of equipment uncertainty for temperature measurement based on testing will use
Equation (17) restated in terms of temperature:

( ) ( )2
2___

2 %%%% TCALERRSTDTOT errTTerrTeq −





+= (20)

where

TOTTeq% = uncertainty component of the temperature measurement channel as a
percentage of full scale

STDTerr% = average standard deviation of the test data set of parameter T as a percentage
of FS [obtained from a large time record over range and multiple measurement
channels using Equations (13) and (16)]

___
% ERRT = average error of the test data set of parameter T as a percentage of FS

[obtained from a large time record over range and multiple measurement
channels using Equations (12), (14), and (15)]

TCALerr% = average uncertainty (as a conservative assumption set to zero) of the calibration

for the testing done to obtain parameters STDTerr%  and 
___

% ERRT .

Equation (19) is restated here in the form of temperature for applications where neither testing nor
manufacturer uncertainty data are available:

( ) ( ) ( )222 %%%% ALGORQUANFETOT TerrTerrTerrTeq ++= (21)

where

FETeq% = error associated with analog front-end electronics

QUANTeq% = quantization error expressed as a percentage of FS

ALGORTeq% = error associated with algorithm of engineering units conversion.
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In Equation (21), observe that for temperature the error ALGORTerr% is not usually neglected
without some consideration, as the relationship between the sensor digitized voltage and the actual
temperature being sensed is typically not a linear relationship. A high-order polynomial or a look-up table
usually best approximates this relationship. For example, with 0 to 100°C full scale and a simple linear
approximation, the error for a type T thermocouple sensor can be as much as 2.5°C over that full-scale
range. When the equipment manufacturer implements an algorithm based on a high-resolution look-up
table or a high-order polynomial, this error is often neglected.

Temperature testing is typically performed to obtain the parameters of Equation (20) using multiple
measurement channels. An end-to-end calibration is performed on these channels to eliminate the
transducer error. A recommended approach consists of placing the actual channel sensors (normally
thermocouples for INEEL testers) into a reference temperature source, which is able to provide any
calibration temperatures over the desired range for the testers in question. Adequate equilibration time
must be allowed before the calibration measurement is taken. The calibration uncertainty using this
method is that of the temperature reference. The test itself would use the reference temperature source,
which is applied simultaneously to the different channel thermocouples. For a full-scale range of 0 to
100°C, the temperature of the reference could be stepped from 0 to 100°C to obtain data over the full-
scale range. After the equilibration period, approximately 1000 data points should be acquired for each
channel at each step. Then, for each channel and at each step, the mean and standard deviation are
computed with Equations (12) and (13). The average error for each channel and each temperature step is
obtained with Equation (14). In Equation (14), the reference is considered the set point of the reference
temperature source. The overall average error ERRT%  and average standard deviation STDTerr%  are
computed with Equations (15) and (16). The uncertainty specification of the reference temperature source
is also the parameter TCALerr% if this source is used for the calibration. Thus, all the information for
Equation (20) is available, and the equipment component for temperature uncertainty, TOTTeq% , can be
obtained. To obtain the temperature measurement uncertainty for a typical application, Equation (18)
[restated here in terms of temperature as Equation (22)] is applied:

( ) ( )TCALTOTT errTeqerr %%% 2 +=  . (22)

Observe that the transducer error from the sensor, TDerr% , appears to be missing from
Equation (22). It is included with the calibration error, as follows. For temperature measurement, two
methods of channel calibration are possible.

1. Use of a simulated thermocouple source (such as a hand-held calibrator), where calibration errors
from both the simulated source and the thermocouple result in Equation (23):

( ) ( )22100% TcSTc
FS

errTCAL += (23)

where

STc = uncertainty of the simulated thermocouple source in °C

Tc = uncertainty of the actual thermocouple

FS = full-scale temperature range in °C.
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2. An end-to-end calibration using a reference temperature source (such as a reference oven), with the
only error from the reference, which yields

)(100% RT
FS

errTCAL = (24)

where

RT = range error in °C for the reference temperature source

FS = full-scale temperature range in °C.

The calibration of Case 1 is typically more convenient and has been most often used. Case 2, which
is less convenient, is available for situations requiring higher accuracy.

2.4.2 Current Measurement

Equation (17), as applied to the current measurement, becomes

( ) ( )2
2___

2 %%%% ICALERRSTDTOT errIIerrIeq −




+= (25)

where

TOTIeq% = uncertainty component of the current measurement channel as a percentage of full
scale

STDIerr% = average standard deviation of the test data set of parameter I as a percentage of FS
[obtained from a large record of time over range and multiple measurement
channels using Equations (13) and (16)]

___
% ERRI = average error of the test data set of parameter I as a percentage of FS [obtained

from a large record of time over range and multiple measurement channels using
Equations (12), (14), and (15)]

ICALerr% = average uncertainty of the calibration and reference for the testing to obtain
parameters STDIerr%  and ERRI%  (typically set to zero as a conservative
assumption).

In the various battery test systems to be evaluated, the test system provides and measures the
current. The provided current is a current source and is precisely regulated. Additionally, the current shunt
used to measure the current is typically part of the tester, and its error is lumped with the equipment error.
In performing current testing to obtain the parameters of Equations (12), (13), (14), (15), and (16),
multiple measurement channels should be used where practical. A calibration can be performed using a
high-precision digital voltmeter (DVM) and an external current shunt. The reference in Equation (14) is
the external shunt current measurement expressed as a percentage of full scale. For current calibration
uncertainty, errors are from the shunt and from the precision DVM monitoring the shunt. For the DVM,
the error typically depends on the range used. The resultant ICALerr% is given by
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( )
2

2100% 





+=

VoltageShuntCal.FS
DVMerrerrerr SHUNTICAL (26)

where

SHUNTerr = shunt error expressed as a decimal fraction (not %)

DVMerr = DVM error expressed as voltage (not % or a decimal fraction).

To obtain the current measurement for a typical application, Equation (18) [restated here as
Equation (27) with the term TDerr% deleted], is applied:

( ) ( )22 %%% ICALTOTI errIeqerr +=  . (27)

Channel calibration typically uses an external shunt for current measurement. The DVM and the
calibration shunt error are parts of the calibration error in Equation (26). The calibration error term

ICALerr% in Equation (27) could be different from the value applied in Equation (25) (due to the
measurement range in use, for example) and is not set equal to zero. Thus, this term must be calculated
using Equation (26). The other term in Equation (27), TOTIeq% , is obtained from Equation (25).

2.4.3 Voltage Measurement

Equation (17), as applied to the voltage measurement, becomes

( ) ( )2
2____

2 %%%% VCALERRSTDTOT errVVerrVeq −





+= (28)

where

%VeqTOT = uncertainty component of the voltage measurement channel as a percentage of FS

%VerrSTD = standard deviation of the test data set of parameter V as a percentage of FS [a
large record of time over range and multiple measurement channels using
Equations (13) and (16)]

ERRV% = average error of the test data set of parameter V as a percentage of FS [a large
record of time over range and multiple measurement channels using
Equations (12), (14), and (15)]

VCALerr% = average uncertainty of the calibration and reference for the testing to obtain
parameters STDerr%V  and ERRV%  (typically set to zero as a conservative
assumption).

Various battery test systems may measure voltages with many channels. The front-end electronics
inherently measures voltage, and a separate transducer is not used. The transducer error term TDerr% is
thus not necessary. Typical voltage testing performed to obtain the parameters of Equations (12), (13),
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(14), (15), and (16) would use several measurement channels. A calibration is typically performed using a
precision DVM and a precision voltage source. The reference in Equation (14) is either the voltage source
set point or the DVM reading. For voltage calibration, the uncertainty error is from the DVM and the
voltage reference. The resultant VCALerr% is given by

22

100% 





−

+





−

=
VoltageScaleFull

VSerr
VoltageScaleFull

DVMerrerrVCAL (29)

where

DVMerr = DVM error expressed as a voltage

VSerr = voltage reference error expressed as a voltage. (If the DVM reading is used as a
reference, this component contains only the voltage stability error.)

To obtain the voltage measurement uncertainty for a typical application, Equation (18) [restated
here as Equation (30) with the term TDerr% deleted] is applied:

( ) ( )22 %%% VCALTOTV errVeqerr +=  . (30)

Typically for voltage measurement, the channel calibration is performed using a precision DVM
and a voltage reference. The calibration error term, VCALerr% , in Equation (30) could be different than
that applied in Equation (28), and thus this term must be calculated using Equation (29). The other term in
Equation (30), TOTVeq% , is obtained from Equation (28).
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3. UNCERTAINTY RELATIONSHIPS FOR DERIVED PARAMETERS

3.1 Theoretical Background

3.1.1 General

The derived parameters used in battery tests and evaluations for the PNGV and Advanced
Technology Development Programs are based upon the obtained measured parameters. The uncertainty of
the derived parameters is thus a function of the uncertainty of the associated measured parameters. This
section states the general uncertainty expressions for derived parameters and then develops specific
expressions for each of the various derived parameters.

We start with the Taylor Series expansion of a function F, truncated to include only the first
derivative terms for a multivariable function:

( ) ( ) ......,....,.....,, 3
3

2
2

1
1

21332211 +∆
∂
∂+∆

∂
∂+∆
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P
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From Equation (31), ( ) ......,...., 3
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∆Pi =
100

%i
iFS

errPP

errPi% = variation of parameter Pi in percentage of full scale

PiFS = full-scale value of parameter Pi.

If variations of parameters of F were not random and we continue to neglect all but the first
derivative terms, small changes in F caused by slight variations by any of the parameters Pi would be
approximated by







+

∂
∂+

∂
∂+

∂
∂= ......%%%1% 33

3
22

2
11

1
errPP

P
FerrPP

P
FerrPP

P
F

F
F FSFSFS

FS
 . (32)

However, the variation in the parameters Pi of F are assumed to be small, random, and statistically

independent. Thus, each error contribution, 





∂
∂=∆ %1% iiFS

iFS
i errPP

P
F

F
F , will combine as the root sum

square (RSS) of all the errors. Equation (33) is obtained as a result:
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Equation (33) is based on the assumptions of random variations, statistical independence, and small
errors.

The error associated with a parameter can come from both calibration and random noise sources.
To better understand this, consider the general form of the error factor:

.σ+=∆ OSPP

POS represents a constant shift of error at some specific PTRUTH. σ is the standard deviation part of
the error that is random or noise. POS is not simply a constant but is a lumping of both linearity and true
offset. If we consider the simple calibration equation

Bmxy +=

where x is the �raw� digitized data and y is the desired engineering units, m becomes the calibration
linearity or sensitivity and B  is the calibration offset.

POS represents a lumping of the error part of m along with the error part of B, both referenced to full
scale. Throughout this report, the most conservative assumptions have been made with respect to
determining the error associated with each parameter.

3.1.2 Difference Functions

Most of the derived parameters are multivariable; either a function of different measured
parameters as in the case of Energy or a function of other derived parameters as in the case of Efficiency.
Several of the derived parameters contain terms that are differences between the same parameter at
different times. The Taylor Series expansion must consider this difference between the same parameter as
an additional parameter

( ) ( )( )( ) ....,.,.. 21 tPtPFF ii −=

Thus the partial derivative of this parameter must also be computed:

( ) ( )( )21 tPtP
F

ii −∂
∂   .

This term would appear in Equation (33) as

( ) ( )( ) ( ) ( )( )
2

21
21









−∆

−∂
∂ tPtP

tPtP
F

ii
ii

 .

The error factor, ( ) ( )( )21 tPtP ii −∆ , is unique to the difference and requires separate consideration.
The additional error term for this case can only come from linearity, since any offset error would subtract
out when the difference was taken.

A special case arises when any of the ( ) ( )21 tPtP ii −  terms appear individually as well as in a
difference term. For this case, we take the conservative approach and apply the total calibration error to
the individual instance and also assume this is all linearity error when the term appears as a difference.
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3.1.3 Integral Functions

Some of the derived parameters involve time integrals. Consider the general form of a measured
variable:

( ) ( ) ( ) ( )tVtVVVtetV TRUTHTRUTHLOSOSN +++= (34)

where

( )teN = random error term assumed to have a normal statistical distribution with zero
mean and standard deviation σ

OSV = error at time of calibration that accounts for zero and sensitivity shifts (assumed
fixed at that time)

LOSV = error of linearity inherent in the equipment (also assumed fixed)

TRUTHV = actual true value of the variable.

In the evaluation of the uncertainty of measured parameters, all errors have generally been
combined into the terms ( )teN and OSV  , with LOSV  neglected, as it is assumed accounted for by OSV .
Thus, Equation (34) becomes

( ) ( ) ( )tVVtetV TRUTHOSN ++=  . (35)

It is necessary to estimate Ne  and/or OSV  in many of the relationships to be developed. A usable
assumption is generally to let the calibration error be OSV  and the standard deviation (derived from tests)
be the random term. The calibration error is denoted by VCALerr%  for voltage or ICALerr%  for current.
Additionally, if the standard deviation is not available, the equipment error, TOTIeq% , for current, or

TOTVeq%  for voltage, can be used as a conservative estimate.

When Equation (35) is integrated over time, the term )(teN  will average to zero, but the term OSV
will accumulate:

⇒  ( ) ( )∫ ∫∫ += dttVdtVdttV TRUTHOS  . (36)

3.1.4 Integrals of Products

Some of the derived parameters are integrals of products. Again, starting with the Taylor series as
applied to an integral function,

∫= dtPPF 21

and assuming the independence of P1 and P2 allows the partial derivative operator to be moved inside the
integral operator, 
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{ } { } { } { } 2112221
2

121
1

PdtPPdtPPdtPP
P

PdtPP
P

F ∆+∆=∆
∂
∂+∆

∂
∂=∆ ∫∫∫∫ . (37)

This can be put in the form of Equation (33), with 
100

%,
100

% 22
2

11
1

errPPPerrPPP FSFS =∆=∆ , and by

assuming errors are random and statistically independent:

{ }( ) { }( )2221

2

112 %%1100% errPPdtPerrPPdtP
FF

FF FSFS
FSFS

∫∫ +=∆=  . (38)

To determine whether Equation (38) is sensible, consider the derived parameter energy, E:

∫∫ ∆+∆+== dtItIVtVVIdtE TRUETRUE ))()()((

where ∆V and ∆I are error terms.

The same argument for neglecting the random error term )(teN  is applied, and

OSOS IIVV =∆=∆ , .

( ) ( ) ( ) ( )( )dtIVItVtIVtItVE OSOSOSTRUETRUEOSTRUETRUE∫ +++=

( ) ( ) ( ) ( ) ∫∫ ∫∫ +++= dtVIdttVIdttIVdttItVE OSOSTRUEOSTRUEOSTRUETRUE

( ) ( ) ∫∫∫ ++=∆ dtVIdttVIdttIVE OSOSTRUEOSTRUEOS  . (39)

If we ignore the last term in Equation (39), because it is the product of two small numbers, it is
similar to Equation (37). Thus, because of the integral effect, the calibration portion of the error is
substituted in Equation (37) to obtain uncertainty.

To determine whether the assumptions that allowed the result of Equation (38) are viable, consider
that the integral function used to process integrals of products is in fact a summation algorithm processing
discrete parameter data, as given by Equation (40).

∑∫
=

∆==
N

i
ii tPPPPF

1
2121 dt  (40)

where ii PP 21 , are the parameters 1 and 2 at the i th time step t∆ .

Additionally, parameters 1 and 2 at the i th time step t∆ can be expressed as a true value, with an added
error:

iiiTRUEii PPPPP 1101111 , σ+=∆∆+=

iiiTRUEii PPPPP 2202222 , σ+=∆∆+= (41)
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where the error terms, ii PP 21 , ∆∆ , consist of an average offset error, 2010 , PP , and noise terms, ii 21 , σσ ,
with a standard deviation of 21, σσ and zero mean. The relation in Equation (40) is the same form as the
discrete cross correlationh between parameters 21, PP :

( ) ∑
=

τ−τ−
=τ

N

i
iiPP PPr

1
21N

1
21

(42)

where

( )τ
21PPr = the cross correlation between 21, PP

τ  = the discrete time shift between 21, PP

N = the number of data points in 21, PP .

Now, substitute the error expression of Equation (41) into Equation (40):

( )( ) errTRUE

N

i
iiTRUEiiTRUE FFPPPPtF ∆+=σ++σ++∆= ∑

=1
22021101

( )∑
=

σσ+σ+σ++σ++σ+∆=∆
N

i
iiiiiiTRUEiTRUEiiTRUEiTRUE PPPPPPPPPPtF

1
2112021020101210221201ERR .

The last 4 terms, iiiiPP 120210212010 P,P,, σσσσ , are either the product of small numbers or because the
summation will average to zero. Additionally, the terms iiTRUEiiTRUE PP 1221 , σσ  will average to zero as the

iσ noise term has zero mean. The final result is

∑∑
==

∆+∆=∆
N

i
i

N

i
ERR PtPPtPF

1
210

1
i120  (43)

where the data sets, ii PP 21 , , are used in place of the unknown ideal sets, iTRUEiTRUE PP 21 , . Since the error
constituents of Equation (43) are statistically independent, Equation (43) must be modified with the RSS
operation to become Equation (44):

2

1
120

2

1
210 





∆+





∆=∆ ∑∑

==

tPPtPPF
N

i
i

N

i
iERR  . (44)

Comparing Equation (44) with Equation (38) (recognizing that Equation (38) is expressed in
percent while Equation (44) is in statistical error magnitude), we see that the summation terms are the
integrals, and the mean error terms 2010 , PP (expressed as a percentage) are given in Equation (38) as

                                                     

h. Random Signal Processing, D. F. Mix, pp. 208�213, Prentice Hall, 1995.
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%% 1110 errPPP FS=

%% 2220 errPPP FS=  .

Thus, the assumptions that enabled Equation (38), i.e., the independence of parameters 21, PP and moving
the partial derivative operator inside the integral operation, are considered valid.

3.2 Application to System-Derived Parameters

The derived parameters of interest for INEEL testing are power, W; energy, E; capacity, Q; source
impedance, Rs; efficiency, Eff; self-discharge, SD; and pulse power capability for both discharge and
regen, RD and PR . All of these derived parameters have as independent variables some combination of
voltage, V; current, I; time, t; or, possibly, other derived parameters. The relationships for the derived
parameters (obtained as described in Section 1.4.2) are given by the following expressions:i

Power: W = VI (45)

Energy: ∫= VIdtE (46)

Capacity: ∫= IdtQ (47)

Source impedance: ( ) ( )
( ) ( )21

21

tItI
tVtVRS −

−= (48)

Efficiency: 
∫
∫

==

CHARGE
BB

DISCHARGE
AA

CHARGE

DISCHARGE

dtIV

dtIV

E
EEff 100100 (49)

Self-discharge:j ( )
7

1 BA EEESD −−= (50)

Discharge pulse power capability: ( )
S

MINMIN
D R

VOCVVP −= (51)

Regen pulse power capability: ( )
S

MAXMAX
R R

OCVVVP −= (52)

                                                     

i. See the PNGV Battery Testing Manual, Revision 3, DOE/ID-10597 (published February 2001) for detailed descriptions of the
calculations of Rs, Eff, SD, PD, and PR.

j. Note that the three subscripts 1, A, and B here refer to the three parts of the self-discharge test. Specifically, part 1 is the
uninterrupted discharge, and parts A and B are the parts of the interrupted discharge before and after the stand interval.
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where

V(t1), V(t2), VA, VB = voltage at a specified time (t1, t2) or test condition (A, B)

I(t1), I(t2), IA, IB = current at a specified time (t1, t2) or test condition (A, B)

E1, EA, EB = energy for specific test condition (1, A, B)

W = power (normally in kW)

E = energy (normally in W·h or kW·h)

Q = capacity (normally in A·h)

RS = source resistance (normally in ohms, Ω)

Eff = round-trip efficiency (in %)

SD = self-discharge (normally in Wh/day, for a 7-day test; the constant
divisor 7 would need to be altered for a test of a different duration.)

RD PP and = pulse power capability (normally in W)

VMIN, VMAX = specific voltages defined for the device under test using a particular
test procedure

OCV = open circuit voltage measured or calculated at a specific point in a
test procedure.

Normalizing a derived parameter�s error relative to full-scale is not practical since full-scale is
relevant only to measured parameters. Thus, the errors for derived parameters will be normalized to the
actual value as a percentage of reading.

3.2.1 Power Uncertainty

The application of Equation (33) to the power relationship expressed in Equation (45) becomes

( ) ( ){ } 2
1

22 %%1% IFSVFS
FSFS

errVIerrIV
IV

W += .

Expressed as a percentage of reading, the resulting uncertainty is given by

2
1

22

%%%

















+





= V

FS
I

FS err
V

Verr
I

IW (53)

where

I and V = measured current and voltage
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IFS and VFS = full-scale current and voltage

Ierr%  = uncertainty of the current (as a percentage of full scale)

Verr%  = uncertainty of voltage (as a percentage of full scale).

3.2.2 Capacity Uncertainty

Equation (36) fits the derived parameter for capacity as expressed in Equation (54). The random
error sources can be assumed to average to zero over time. However, the calibration error for a particular
variable will not average out but will accumulate. Applying Equation (36) to capacity and choosing to
define the uncertainty relative to reading, we obtain

( )∫
∫=

dttI

dterrI
Q

ICALFS %
% (54)

where

ICALerr% = calibration error current (in % FS)

∫ dttI )( = actual derived capacity Q.

Equation (54) can be further simplified to become Equation (55) by combining the two integral
terms into average current:

I
errIQ ICALFS%% = (55)

where

I = average current over the time interval

3.2.3 Energy Uncertainty

Rewriting Equation (38) specifically for the energy expression in Equation (46) yields

{ }( ) { }( )22
%%1% ICALFSVCALFS

FS
errIVdterrVIdt

E
E ∫∫ +=  .

Expressed as a percentage of reading, the final result is given by

{ }( ) { }( )22
%%1% ICALFSVCALFS errIVdterrVIdt

E
E ∫∫ += (56)

where

E = computed energy
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I and V = measured current and voltage

IFS and VFS = full-scale current and voltage

VCALerr%  = voltage calibration error (as % FS)

ICALerr%  = current calibration error (as % FS).

3.2.4 Source Impedance Uncertainty

The source impedance relationship in Equation (48) has the general form of Equation (57):

43

21

PP
PPF

−
−=  . (57)

If all the parameters are statistically independent, then Equation (33) applies, and this relationship
is

2
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 .

We must assume in implementing the above relationship that all the cross derivatives are zero. Consider
what happens if we do not for the source impedance Equation 48.

Taking the partial derivatives of Equation (48) and including all the cross derivatives, we obtain

( )
( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )
( )
( )





∂
∂−

∂
∂−−−−−−





∂
∂−=

∂
∂

1

2

1

1
212121

1

2

1

S

tV
tI

tV
tI2tItItVtV1tItI

tV
tV1

tV
R   . (58)

We argue that the cross derivatives between parameters at different times are zero, and we define
the term:

)t(V
)t(I

)t(V
)t(I

*R

1

2

2

1

1

S
∂
∂=

∂
∂= (59)

)(
)(

)(
)(*

2

2

1

1

tI
tV

tI
tVRS ∂

∂
=

∂
∂

=  . (60)

Combining Equations (58), (59), and (60),

( ) 1)()(*1
)( 21

1

−−











−=

∂
∂ tItI

R

R
tV

R

S

SS  .
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In a similar way, the remaining partial derivatives can be obtained:

( ) 1)t(I)t(I*R

R1
)t(V

R
21

S

S

1

S −−











−−=

∂
∂

( )( ) 1)t(I)t(IR*R
)t(I

R
21SS

1

S −−−=
∂
∂

( )( ) 1)t(I)t(IR*R
)t(I

R
21SS

1

S −−−−=
∂
∂  .

If cross derivative terms are considered valid, then *
SS RR = , and the results are meaningless. We

argue that the parameter variations that the partial derivative operator is sensing are due to the uncertainty
of the measurement system, and such a variation in any one parameter will have no effect on any of the
other parameters except the overall function. Thus, the existence of the term *

SR  can come only from real
perturbations in the actual physical process, not from uncertainty injected into the data acquired by the
measurement system. This proves that the cross derivatives do not exist, and the independence
assumption is valid. Taking the partial derivatives of Equation (48) yields

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] 1
21

2

1
21

1

−− −=
∂
∂

−−=
∂
∂

tItI
tV

R
,tItI

tV
R SS  (61)

( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )[ ] 2
2121

2

S2
2121

1

S tItItVtV
tI

R
,tI)tI(tVtV

tI
R −− −−=

∂
∂

−−−=
∂
∂  . (62)

However, the voltages at times 1t and 2t  in Equation (48) are not totally independent. The same is
true of the currents. The steady-state errors consist of offset and sensitivity errors that are lumped and
relative to full scale ( )OSOS IV , .k If we assume the worst case and consider that error to be all associated
with sensitivity, then the differences between the voltage and current at times t1 and t2 will also generate
errors and thus must also be considered as additional variables. For purposes of error analysis, the
function of source impedance variables is given by

( ) ( ) ( ) ( ) ( ) ( )[ ]21212121SS t,tI,t,tV,tI,tI,tV,tVRR ∆∆=  .

To obtain the additional partial derivatives, Equation (48) must be rewritten in the following forms:

( )
( ) ( )21

21,
tItI

ttVRS −
∆=  and ( ) ( )

( )21

21

, ttI
tVtVRS ∆

−=

where ( ) ( ) ( ) ( ) ( ) ( )21212121 ,,, tItIttItVtVttV −=∆−=∆ .

                                                     

k. i.e., VOS is the error voltage (in volts) at full scale that results from the combination of offset and sensitivity errors; and
similarly for IOS.
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The additional partial derivatives for ( ) ( )2121 ,,, ttIttV ∆∆ are given by

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )[ ] 2
2121

21

S1
21

21

S tItItVtV
t,tI

R,tItI
t,tV

R −− −−−=
∆∂

∂−=
∆∂

∂  . (63)

The error associated with these additional variables is given by

( ) ( ) ( ) ( ) ( ) ( )
FS

OS
FS

OS I
tItIIttI

V
tVtVVttV 21

21
21

21 ,,,
−

=∆
−

=∆  . (64)

The error associated with the individual voltage and current variables is given by

( ) ( ) ( ) ( ) IV tItItVtV σ=∆=∆σ=∆=∆ 2121 ,  . (65)

All of these errors are assumed statistical and independent, and substituting Equations (61), (62),
(63), (64), and (65) into the Taylor Series statistical form (RSS) yields
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Dividing both sides of the above relation by RS,
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Converting to percentage of reading,
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The final result is given by
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where

STDerrV%  = standard deviation for voltage uncertainty (as % FS)

STDerrI%  = standard deviation for current uncertainty (as % FS)

( )1tV and ( )2tV = measured voltages at times t1 and t2
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( )1tI and ( )2tI  = measured currents at times t1 and t2

ICALerr% = current calibration error (as % FS)

VCALerr% = voltage calibration error (as % FS).

As with the uncertainty of energy, the uncertainty of source impedance given by Equation (66) is
expressed as percentage of reading. Note that in this case it may be necessary to use

TOTTOT VeqIeq %and%  as estimates of the current and voltage standard deviations.

3.2.5 Efficiency

Starting with Equation (33)l and the efficiency relationship in Equation (49), we obtain
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The partial derivatives are as follows:
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l. Note that Equation (33) applies, provided that the errors (including calibration errors) in parts A and B of the test are
independent.
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Substituting Equation (49) into each of the above relationships yields
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Since Eff is the result of time integrals, the standard deviation portion of the errors averages to zero,
leaving only the calibration part of any errors, as follows:

( )FSVCALBA VerrVV ××=∆=∆ −210%

( )FSICALBA IerrII ××=∆=∆ −210%

where

VCALerr%  = voltage calibration error (as % FS)

ICALerr%  = current calibration error (as % FS)

FSI  and FSV  = full-scale current and voltage.

Combining these results, dividing by the calculated value of efficiency and converting to
percentage of reading yields

=Eff% .(67)

Equation (67) can be simplified by assuming the following approximate relationships:
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where the kV , kI , and kP are averages over the time interval Tk. Equation (67) becomes the approximate
result of Equation (68):
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Note that the goodness of this approximation is date-dependent. In the general case, Equation (67)
should be used.

3.2.6 Self-Discharge

The expression for self-discharge given by Equation (50) can be rewritten in the form

( ) ( ) ( )( )
7

11 BBAA tEtEtESD ∆−∆−∆=

where

( ) ∫
∆

=∆
1t

11 VIdttE

( ) ∫
∆

=∆
At

AA VIdttE

∫
∆

=∆
Bt

BB VIdttE

and the integrals are performed over the three specific parts of the test defined in Section 3.2 (i.e., the
interval ∆t1 is the duration of part 1 of the test, and correspondingly for parts A and B of the test).

Consider the general form of these energy terms:

( ) ∫
∆

=∆
it

ii VIdttE  .

An error can be associated with each term and is given by

( ) ( )( ) . dtIIVVerrEtE ERR
t

ERRii

i

++=+=∆ ∫
∆

11 (69)

The expression for self-discharge can also be rewritten as a combination of these constituent errors
for each term as

[ ]BBAA errEerrEerrESDSD −−−−+=∆+ 117
1  .
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Examining this expression yields

[ ]BA errerrerrSD −−=∆ 17
1  . (70)

From this point forward, there are two different approaches that can be taken. One approach
assumes that error in voltage or current is due to a calibration offset. The other approach assumes that the
error comes from linearity. In the earlier derivation of the uncertainty for measured parameters, the error
associated with a parameter came from calibration and from random statistical noise. Because of the
integrals, the noise term will be averaged to zero. However, the calibration error term will not. In the
discussion for the derivation of the measured parameter relationships, the calibration error term was a
combination of offset and linearity referenced to full scale. The two were lumped into a single error term
because there were no available data that would allow for separation into offset and sensitivity errors. For
some of the other derived parameters, there is no impact and hence no need to distinguish the nature of
this error. However, for source impedance, because the offsets would subtract to zero it was necessary to
select the conservative assumption that the calibration error was from sensitivity, not from offset. In the
present case, it is not obvious which assumption is most conservative, and thus the derivation is presented
for both cases. The user must therefore compute both uncertainties and select the most conservative
result. (The general case, where errors result from both offset and linearity, is not treated here due to its
complexity. In most cases, one of these effects will dominate the results.)

3.2.6.1 Case 1. Error Results Entirely from Calibration Offsets. Consider the power term in
the integrand of Equation (69):

( )( ) ( )( ) OSOSOSOSOSOSerrerr VIVIIVVIIIVVIIVV +++=++=++  . (71)

These errors are considered to be only from calibration offsets, and the error terms VOS and IOS can be
expressed as

VCALFSOS errVV %01.0=  (72)

ICALFSOS errII %01.0=  .

Substituting these expressions into the integrand, it becomes

( )( )VCALFSICALFSICALFSVCALFS errVerrIVerrIIerrVVI %01.0%01.0%01.0%01.0 +++

where

VCALerr% = calibration voltage error (as % FS)

ICALerr% = calibration current error (as % FS)

VFS = full-scale voltage used for voltage calibration

IFS = full-scale current used for current calibration

V,I = measured voltage and current, respectively.

The last term in the integrand, IOSVOS, or ( )( )VCALFSICALFS errVerrI %01.0%01.0 , is neglected because
it is the product of two very small quantities.
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Substituting this reduced integrand into Equation (69) yields

( )( ) ∫∫∫
∆∆∆

++≅++=+
iii t
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t

OSi
t

OSOSii VdtIIdtVEdtIIVVerrE  .

Thus, erri can be expressed as

∫∫
∆∆

+=
ii t

OS
t

OSi VdtIIdtVerr  . (73)

Substituting Equation (73) into Equation (70) and simplifying, we obtain
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In the above expression, the terms Vos and Ios are assumed to be statistically independent. Thus,
changing to percentage of reading, we obtain
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Substituting the specific expressions for Vos and Ios into Equation (74) yields Equation (75) for this
case:
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Noting that the first three integral terms in this result correspond to capacity values, this result can
also be represented as Equation (76):
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where Q1, QA ,and QB are the capacities measured 
k during the three specific parts (1, A, and B) of the

self-discharge test, as defined in Section 3.2.

This expression applies provided that the same current channel is used for the measurement of both
energy and capacity, which is normally the case.

                                                     

k. Using the same time units as self-discharge, i.e., if energy loss is measured in W·h, then these capacities are measured in A·h.
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3.2.6.2 Case 2. Error Results Entirely from Calibration Linearities. Again, consider the
integrand of Equation (69):

( )( ) ( )( ) LINLINLINLINLINLINERRERR VIVIIVVIIIVVIIVV +++=++=++  .

This error is now considered to be only from linearity, and the error terms, LINLIN I V and , can be
expressed as

VerrV VCALLIN %01.0=

IerrI ICALLIN %01.0=  .

Substituting these expressions into the integrand, it becomes

( )( )VIerrerrIVerrVIerrVI VCALICALICALVCAL %01.0%01.0%01.0%01.0 +++

where

VCALerr%  = calibration sensitivity error for voltage as a percentage of reading

ICALerr%  = calibration sensitivity error for current as a percentage of reading

V and I = measured voltage and current, respectively.

As in Case 1, the last term is neglected because it is the product of very small numbers. Thus,
Equation (69) can be expressed as

( )∫
∆

++=+
it

ICALVCALii dtIVerrVIerrVIerrE %01.0%01.0

( ) ( )∫∫
∆∆

+=
ii t

ICAL
t

VCALi dtIVerrdtVIerrerr %01.0%01.0

( )∫
∆

+=
it

ICALVCALi dtIVerrerrerr )(%01.0%01.0

( ) iICALVCALi Eerrerrerr %01.0%01.0 +=  .

Because the voltage and current errors are assumed to be statistically independent, the above
expression becomes

( ) ( )( ) iICALVCALi Eerrerrerr 2
1

22 %01.0%01.0 +=  . (77)

Substituting Equation (77) into the general expression for the self-discharge error in Equation (70),
we obtain
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[ ] ( ) ( )( )2
1

22
1 %01.0%01.0

7
1

ICALVCALBA errerrEEESD +−−=∆

( ) ( )( )2
1

22 %%100% ICALVCAL errerr
SD
SDSD +=∆=  . (78)

The final result in Equation (78) expresses the error in self-discharge (as a percentage of reading)
caused from linearity error (also as a percentage of reading).

3.2.7 Pulse Power Capability

Pulse power capability is a derived parameter calculated from a combination of directly measured
parameters (voltage and current) and other derived parameters (source resistance, and in some cases an
interpolated voltage value). Pulse power capability at a given depth-of-discharge is calculated separately
for discharge and regen conditions. Both cases are treated in this section. The expressions used for the
calculations are shown in Equations (51) and (52). They are similar in form, both involving the product of
a limiting voltage and a voltage difference (proportion to the maximum allowable current at the present
DOD) divided by the applicable source resistance.

The limiting voltage is a constant specified by the battery manufacturer. The voltage difference
corresponds to the maximum allowable voltage change from the present open-circuit voltage (OCV) to
the limiting voltage. For discharge pulse power capability, the applicable OCV is measured just prior to
the start of the test current pulse and is thus a directly measured value. For regen pulse power capability,
the battery is not at voltage equilibrium at the start of the test current pulse; consequently, the OCV is
interpolated from the previous and succeeding OCV values measured during the test, based on the relative
charge fraction removed before and after the test current pulse.l

3.2.7.1 Discharge Pulse Power Capability. For discharge conditions, pulse power capability is
calculated using the following equation:

( ) DISCHARGEMINDISMIN RVOCVVCapabilityPowerPulseeargDish ÷−⋅=

Restating the Discharge Power expression with the variables in abbreviated form,

( ) SMINMIND RVVVP ÷−⋅= 0 (79)

where

( )
( )10

10

II
VVRS −

−=  . (80)

In equation (79), PD is a function of four measured variables. The uncertainty of DP is affected by
these variables along with the differences of pairs of these variables:

( ) ( ){ }10101010 ,,,,, IIVVIIVVPD −−

                                                     

l. See page 28 of the PNGV Battery Test Manual (DOE/ID-10597, Rev. 3, Feb. 2001) for a detailed description of this test and
associated calculations.
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where

0V = measured voltage at time t0 just prior to the discharge current pulse

1V = measured voltage at specified time t1 during the discharge current pulse

0I = measured current at time t0 just prior to the discharge current pulse (normally
zero)

1I = measured current at specified time t1 during discharge current pulse

( )10 VV − = change in measured voltage from time t0 to time t1

( )10 II − = change in measured current from time t0 to time t1

MINV = manufacturer-defined constant that represents the minimum voltage allowed
under pulse discharge conditions.

As with the derivation for source impedance in Section 3.2.4, we make the conservative
assumption that the calibration error is due to sensitivity (i.e., linearity), and thus both the voltage
difference and the current difference become parameters that introduce uncertainty. (For the offset portion
of such error, the differences would not contribute error to the power capability determination.)
Substituting Equation (80) into Equation (79) and obtaining the partial derivatives,
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Each of these partial derivatives is used in the Taylor Series formulation of uncertainty, limiting
terms to first derivatives only and assuming statistical independence:
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Note that because the variable V0 appears in the expression by itself as well as in a difference term,
it contributes calibration error, conservatively expressed as an offset given by FSOSVV∆ , along with the
standard deviation error of Vσ . Substituting the partial derivatives into Equation (81) and simplifying,
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Rearranging terms in Equation (82) and dividing by DP  gives the result as a relative value, i.e., a
fraction of reading:
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Note that ∆ VOS and ∆ IOS in this derivation are the fractional error voltage and current due to
calibration errors, i.e., ∆ VOS = 0.01% errVCAL, and ∆ IOS = 0.01% errICAL.

Converting Equation (83) to percentage of reading and substituting the percentage error terms used
in previous derivations yields the final result of Equation (84):
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where

STDerrV% = standard deviation for voltage uncertainty (as %FS)

STDerrI% = standard deviation for current uncertainty (as %FS)

FSV = full-scale voltage
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FSI = full-scale current

ICALerr% = current calibration error (as %FS)

VCALerr% = voltage calibration error (as %FS).

3.2.7.2 Regen Pulse Power Capability. For regen conditions, pulse power capability is
calculated using the following expression:

( ) REGENREGENMAXMAX ROCVVVCapabilityPowerPulsegenRe ÷−⋅= .

Restating the regen power capability expression with the variables in abbreviated form,

( ) SRMAXMAXR RVVVP ÷−⋅= (85)

where

( )
( )32
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II
VVRS −

−= (86)

( )
BA

A
R QQ

QVVVV
+

−−= 544 (87)

∫=
AT

A IdtQ , ∫=
BT

B IdtQ  . (88)

The basic form of Equation (85) is the same as Equation (79). However, RV  is not a measured
variable; rather, it is a derived variable used only to support this calculation. In Equation (85), RP  is a
function of the following measured variables (and/or differences of measured variables) that determine its
uncertainty:

( ) ( ) ( ){ }543232325432 VV,II,VV,I,I,V,V,V,VI,PD −−−

where

I = measured current to be integrated during time intervals TA and TB during the test

TA = time interval from the start of the previous discharge pulse to just prior to the
regen current pulse

TB = time interval from just prior to the regen current pulse to the start of the
following discharge pulse

2V = measured voltage at time t2 just prior to the regen current pulse

3V = measured voltage at a specified time t3 during the regen current pulse
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4V = open-circuit voltage measured at the start of the previous discharge pulse

5V = open-circuit voltage measured at the start of the following discharge pulse

2I = measured current at time t2 just prior to the regen current pulse

3I = measured current at a specified time t3 during the regen current pulse

( )32 VV − = change in measured voltage from time t2 to time t3

( )32 II − = change in measured current from time t2 to time t3

( )54 VV − = change in open-circuit voltage between start of previous and next discharge
pulses

AQ = net discharge during previous discharge pulse

BQ = net discharge during regen pulse and following C/1 discharge segment (QA and
QB normally total 10% DOD measured)

MAXV = manufacturer-defined constant that represents the maximum voltage allowed
under pulse regen conditions.

Substituting Equations (86) and (87) into Equation (85) and taking the appropriate partial
derivatives of the variables that cause uncertainty, and using the assumption that
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Note that this partial derivative assumes that errors in I will apply equally during the time intervals
TA and TB, which is not guaranteed to be true under all conditions. If the partial differentiation is done
with respect to each time interval separately, the resulting partial derivatives are
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Because the value of QB can be negative, the choice between these two forms of the partial
derivative may be data-dependent. However, it can be shown that this second form is the conservative
version over the current ranges most commonly used for the HPPC test, and thus it is used here.
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The Taylor Series form of uncertainty for these partial derivatives is given by
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The general principle underlying this form of the Taylor series expansion is that individual
parameters are affected by the complete error contribution, while integrals of parameters are affected only
by the calibration error contribution.  If the parameter is a difference of itself at two separate times, then
the calibration error contribution is assumed to be entirely from linearity.  If the statistics of the
calibration errors are such that either offset or linearity errors are dominant, it may be possible to neglect
some of these terms in practice.

Substituting the partial derivatives of Equations (89) through (95) into each term of Equation (96),
regrouping by error type, simplifying the resulting expressions, and dividing by PR to convert the result to
fraction of reading gives Equation (97):
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where

Vσ = standard deviation for measured voltage (V)

Iσ = standard deviation for measured current (A)

∆ OSI = combined current calibration error for measured current (unitless fraction)

∆ OSV = combined voltage calibration error for measured voltage (unitless fraction)

FSI = full-scale value for measured current (A)

FSV = full-scale value for measured voltage (V).

In defense of the reasonableness of this very complicated expression, note that the first term
associated with each error type is identical (allowing for notation differences in ∆VOS and ∆IOS) to that
derived for source resistance in Section 3.2.4. The remaining terms all have to do with errors introduced
by the calculation of the open-circuit voltage VR. It is possible to derive the uncertainty of VR separately
using Equation (87) (because all of its associated variables are independent of others used in calculating
PR) and combine this result using a simplified version of the Taylor series expression in Equation (96).
This gives the same result as Equation (97) but is not shown here due to its length.

The uncertainty parameters defined above can be expressed in terms of the general form of
uncertainty parameters defined earlier for voltage and current:
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If these are substituted in Equation (97), the resulting Equation (98) gives the uncertainty of regen
power capability as a percentage of reading:
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Again, note that the first term associated with each error type is identical (except for minor
notational changes) to the final result for Source Resistance uncertainty in Equation (66). We originally
suspected that many or all of the other terms associated with errors in OCVREGEN would be negligible, but
preliminary calculations using sample data indicate that this is not the case. Consequently, the entire
expression has been retained for completeness.

Application of Equation (98) must account for the fact that the time intervals TA and TB in
Equation (98) are the times during which charge is integrated for the calculation of OCVREGEN. For some
types of battery testers, charge is not accumulated during rest periods, and thus current offsets during such
intervals would not affect the results. In such cases, the relevant times are not exactly as defined in
Equation (88); rather, they are only the portions of these intervals when charge is actually being
accumulated.

3.2.8 Available Energy

There is one additional derived parameter of interest to the PNGV program that is not defined in
Section 1.4.2, nor is there an expression provided for it in Section 3.2. This parameter is called available
energy, and it has not been previously discussed because there is no explicit expression that defines it in
terms of measured variables. It is defined implicitly by the method used for calculating it, which is
described in Appendix E of the PNGV Battery Test Manual, Revision 3, DOD/ID-10597. This calculation
approach means that determining uncertainty for available energy is a more complex process than for
other derived parameters. It is not clear that it is even proper to refer to �measurement� uncertainty for
this parameter, because no directly measured parameters are used in the calculation; instead, available
energy is calculated from a series of values for other derived parameters, which in turn are calculated
from two different tests.

A simplified description of available energy is as follows: it represents the energy available for
discharge at a constant rate between two depth-of-discharge (DOD) values.m The two DOD values are
(1) the minimum DOD value at which the battery�s calculated regen pulse power capability equals the
PNGV regen pulse power goal; and (2) the maximum DOD value at which the battery�s calculated
discharge pulse power capability equals the PNGV discharge pulse power goal. Discharge and regen
pulse power capabilities are calculated from a Hybrid Pulse Power Characterization (HPPC) test, which
provides data at nine specific DOD values for each. Discharge energy is calculated from data acquired
during either a constant-current or a constant-power discharge test (abbreviated as constant-current/power
                                                     

m. Depth-of-discharge (DOD) is the fraction of rated battery capacity removed from a fully charged battery under some
prescribed test conditions. DOD = (charge removed) ÷ (rated capacity)
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test here). The results of these two tests are related by equating the corresponding DOD values in the two
tests.

The meaningfulness of available energy depends on these assumptions: (a) a battery can be
modeled simplistically but usefully as an ideal voltage source in series with an internal source resistance,
(b) both the source voltage and the source resistance are continuous and �well behaved� functions of
depth-of-discharge, and (c) a given DOD value represents the same battery �state� for both HPPC and
constant-current/power tests. The source voltage and source resistance are functions of the specific battery
under test and are thus not defined by exact expressions; instead, they are determined at various DOD
values from test data. As a direct result of these assumptions and the expressions used for calculating
them, discharge energy and pulse power capability are also continuous and �well behaved� functions of
DOD. Thus, they can be related to each other through depth-of-discharge as an intermediate variable.

Note that discharge and regen pulse power capability are �known� only at the nine DOD values
where calculations can be made for each, but determination of available energy is made using two
specific pulse power capability values (1 discharge and 1 regen), which may not correspond to any of the
�measured� points. For practical purposes, this requires fitting a curve through the nine calculated values
and assuming that it represents the underlying function.n This is also true for the relationship between
discharge energy and DOD, although many more data points are typically available in this case.

As a final result, available energy is wanted as a function of pulse power capability. This is
accomplished in stepwise fashion by (1) determining the DOD values corresponding to the discharge and
regen power capability goal values, (2) equating these HPPC DOD values to the corresponding constant
current/power DOD values, and (3) determining the discharge energy values corresponding to these same
DOD values. The difference between the two resulting discharge energy values is defined as available
energy. This process is illustrated graphically in Figure 9, where the regen and discharge power goals are
designated PR and PD; the corresponding DOD values are QR and QD; and the resulting energy values are
ER and ED. Available energy is then the difference between ED and ER.

Three types of measurement error are inherent in this process: (1) uncertainty in the current and
voltage measurements used to calculate pulse power capability, (2) uncertainty in the current
measurement used to calculate DOD during the HPPC test and the constant current/power test, and
(3) uncertainty in the current and voltage measurements used to calculate energy during the constant
current/power test.o

Errors in determining DOD (i.e., type 2 above) are neglected here, because the available energy
calculation process defines the measured DOD values in the two tests as equivalent.p Thus, the DOD
values themselves do not contribute to uncertainty in the result; only the correspondence between the two
DOD scales is used.

                                                     

n. Note that the PNGV goals are different for discharge and regen pulse power capability. The graphical approach to determining
available energy described in the PGNV manual typically scales the regen power capability curve by the ratio of the two goals (so
that both power curves are expressed in terms of equivalent discharge power). However, the uncertainties of discharge and regen
power capabilities are different functions of both power and DOD. The description given here avoids this complexity by using
the (different) goal power values directly.

o. DOD and energy are usually the results of numerical integration (of current or the product of current and voltage) within a
battery test station and thus are calculated parameters.

p. This assumed equivalence of the two DOD scales is not electrochemically exact in any case. Current calibration errors are the
only measurement errors that would affect this correspondence, and differences due to these are small because the two tests are
run consecutively using the same current measurement channel.
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Determining the uncertainty of available energy requires identifying the contributing error terms,
accounting for any dependencies between them, and combining independent error terms in RSS fashion.
There are four error sources to be considered: (1) ∆ED,P, the error in ED due to uncertainty in the
measurements used to calculate PD, (2) ∆ER,P, the error in ER due to uncertainty in the measurements used
to calculate PR, (3) the error in ED due to uncertainty in the measurements used to calculate ED, and (4) the
error in ER due to uncertainty in the measurements used to calculate ER.

Error sources (3) and (4) can be combined, because Equation (56) shows that they both depend
only on the voltage and current calibration errors over the respective time intervals where ED and ER are
calculated. Since the time interval for (4) is a subset of the time interval for (3), the resulting combined
error of these sources, designated ∆ED-R, is found by using Equation (56) calculated over the portion of
the constant current/power test between QR and QD.

{ }( ) { }( )22
%%

100
1∆ ICALFSVCALFSRD errIVdterrVIdtE ∫∫ +=− (99)

where the integrals of I and V are computed between QR and QD and other terms are as in Equation (56).

All of ∆ED-R, ∆ED,P, and ∆ER,P are independent with respect to random measurement errors. They
share some potential dependencies because the same voltage and current calibration errors apply to all of
them. However, ∆ED-R is affected primarily by calibration offset errors, while ∆ED,P and ∆ER,P are affected
primarily by calibration linearity errors. Further, the shared effects of linearity errors on ∆ED,P and ∆ER,P
can be neglected, provided that they are not the dominant error sources. Thus, these terms will be treated
as independent for purposes of this study.q

                                                     

q. In some cases, these effects can be expressed more precisely. For example, current calibration linearity errors have no effect on
a constant-current test, while neither current nor voltage calibration offset errors have any effect on discharge power capability
results. In general, there must be assumed to be at least some weak dependencies among these error sources that are being
neglected here, and thus an RSS calculation is not guaranteed to be conservative. However, in prior sections of this report
calibration errors are generally assumed to be either all offset or all linearity (whichever is worse); either assumption in this case
would tend to reduce the effects of these dependencies.
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Figure 9. Available energy calculation process.
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Based on this assumed independence, the error in available energy (in units of energy) can be
expressed as Equation (100):

( ) ( ) ( )222 ∆∆∆∆ PR,PD,RD EEEAE ++= −  . (100)

Developing expressions for the other error terms, ∆ED,P and ∆ER,P, is a somewhat more complex
process. It requires visualizing the energy relationship in Figure 9 as a function of DOD (charge
removed), which in turn is visualized as a function of either discharge or regen power capability (i.e., the
inverse relationship of the upper curves in Figure 9.) Generically, this can be expressed in terms of three
functions (f, g, and h), which are assumed to represent the underlying behavior in the three curves shown
in Figure 9:
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Given these functional relationships (whose exact expressions are unknown, although analytical
expressions can be derived for a given data set by fitting curves to the known points), it is now possible to
estimate ∆ED,P and ∆ER,P.

Three other functional relationships need to be defined: the uncertainties in energy, discharge
power capability, and regen power capability as a function of DOD. Measurement uncertainties for these
three derived parameters are defined by Equations (56), (84), and (98) respectively, but these are in terms
of the underlying measurements of current and voltage. Neither the power capabilities of interest (PD and
PR) nor the energy values of interest (ED or ER) necessarily correspond to any of the measured points, so
the uncertainties at these points must be determined by fitting curves through the uncertainty values
calculated at the measured points. Examples of the resulting uncertainty relationships are shown in
Figures 10 and 11 for the same sample data set used in Figure 9.

The sample energy uncertainty function in Figure 10 appears to have the same shape as the energy
curve itself in Figure 9. This is because the expression derived for energy uncertainty in Equation (56) is
almost a constant percentage of reading for a constant current or constant power test. The power
capability uncertainty curves are more complex, because they are a combination of effects of statistical
and calibration errors whose relative magnitudes are data-dependent. In effect, the shapes of these curves
depend on the shapes of the power capability curves, which in turn vary, depending on the specific device
under test. Thus, there is no general form of these relationships; they must be determined for each data
set.

Let the three uncertainty relationships in Figures 10 and 11 be represented by functions UE(Q),
UD,P(Q), and UR,P(Q). For example, the uncertainty of regen power PR (i.e., the regen power uncertainty at
DOD value QR in Figure 11) is denoted by UR,P (QR).
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Figure 10. Example energy uncertainty as a function of DOD.

Figure 11. Example power capability uncertainties as a function of DOD.
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Now, ∆ER,P, the error in ER due to uncertainty in PR, can be determined based on the following
logic: the uncertainty in PR [i.e., UR,P (QR)] implies some corresponding uncertainty in QR.r This
uncertainty in QR due to PR will in turn affect the calculated uncertainty of energy value ER according to
the relationship in Figure 10. An error in QR of magnitude ∆QR will result in a change in the uncertainty
of ER of magnitude UE (QR+∆QR) � UE (QR). This change in the uncertainty of ER is the error term ∆ER,P.
We assume (a) that all the functions defined above are continuous and �well behaved,� and (b) that the
uncertainties involved are small fractions of the parameter values.s This allows the functions to be treated
as linear in a local region about the point of interest. For example, Figure 12 shows the result near QR of
fitting a curve to the calculated regen power uncertainty values in Figure 11. Even though the curve fit
uses a sixth-order polynomial approximation, the result is still approximately linear in the region
around QR.

Figure 12. Example of approximate linear behavior of uncertainty function.

                                                     

r. The implied uncertainty in QR referred to here is not due to the measurement (actually calculation) of DOD, which is being
neglected as previously noted. Instead, the existence of regen power uncertainty is interpreted to mean that some value of Q
different from QR could be the value that actually corresponds to PR, and the range of such values of Q is treated as an uncertainty
in QR.

s. Assumption a is almost guaranteed to be true because (1) all the functions related to power capability are determined by fitting
curves through no more than nine data points, typically using low-order polynomial approximations, and (2) the energy versus
DOD curve and the associated energy uncertainty curve are approximately linear. Assumption b is not guaranteed, but the
acceptability of very large uncertainties is not likely to depend on their exact values, in any event.
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Using these assumptions yields the following results:

( )R
E

RPR, Q
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where ( )R
E Q

dQ
dU is the slope of the function UE at QR

t

( ) ( )RRPR,R P
dP
dhQUQ ⋅=∆

where ( )RP
dP
dh is the slope of the function h at PR .

The error in energy value ER (in units of energy) as a result of the measurement uncertainty
associated with PR is thus defined by Equation (101):

( ) ( ) ( )R
E
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dUP
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dhQUE ⋅⋅=∆  . (101)

In exactly analogous fashion, the error in energy value ED (in units of energy) as a result of the
measurement uncertainty associated with PD is defined by Equation (102):

( ) ( ) ( ).∆ D
E

DDPD,PD, Q
dQ

dUP
dP
dgQUE ⋅⋅= (102)

Substituting Equations (99), (101), and (102) into Equation (100) gives the result of Equation (103)
in units of energy.
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t. Note that all these expressions are written as though the slopes of these curves are positive. This can be done without loss of
generality because the resulting expressions will be combined in RSS fashion using Equation (100), so the signs of the individual
terms are irrelevant.
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This result is converted from units of energy to percentage of reading by dividing by the calculated
available energy and multiplying by 100 to give the final result of Equation (104):
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where

PD = PNGV Discharge Pulse Power Capability goal

PR = PNGV Regen Pulse Power Capability goal

QD = battery state (DOD) at which the calculated Discharge Power Capability is
exactly equal to the PNGV goal. (This is the maximum depth of discharge at
which both PNGV power goals can be met.)

QR = battery state (DOD) at which the calculated Regen Power Capability is exactly
equal to the PNGV goal. (This is the minimum depth of discharge at which
both PNVG power goals can be met.)

∫ Idt = integral of current between the battery (DOD) states QR and QD

∫Vdt = integral of voltage between the battery (DOD) states QR and QD

UD,P(QD) = Discharge Power Uncertainty vs DOD function evaluated at QD. (Function is
determined empirically from test data at various DOD values.)

UR,P(QR) = Regen Power Uncertainty vs DOD function evaluated at QR. (Function is
determined empirically from test data at various DOD values.)

g = function relating battery state (DOD) to Discharge Power Capability
(determined empirically from test data taken at various DOD values).

( )DP
dP
dg = slope (derivative) of function g at PD

h = function relating battery state (DOD) to Regen Power Capability (determined
empirically from test data taken at various DOD values).

( )RP
dP
dh = slope (derivative) of function h at PR
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UE = function relating Energy Uncertainty to DOD (determined empirically from test
data taken at various DOD values).

( )D
E Q

dQ
dU = slope (derivative) of function UE at QD

( )R
E Q

dQ
dU = slope (derivative) of function UE at QR

VFS = full-scale voltage

IFS = full-scale current

%errICAL = current calibration error (as %FS)

%errVCAL = voltage calibration error (as %FS).

Note that the last two terms in Equation (104) cannot be calculated directly from the original test
data. All the functions involved are based on curves fitted to a particular set of test data. The nature of this
functionality (i.e., the shape or form of these curves) varies with the device being tested. Thus, arriving at
a numerical value for the uncertainty of available energy for any given data set requires a great deal more
calculation than is necessary for other derived parameters. However, the assumption of �local
near-linearity� used for deriving Equations (101) and (102) can be used to advantage in simplifying these
calculations in many cases. Both the derivatives and the uncertainty functions in these equations can be
estimated by linear approximations using the nearest calculated points, rather than actually performing the
curve fitting. This approach is specifically recommended for automated calculations; experience has
shown that the power capability results in particular are so variable in form that automated curve fitting is
risky. Further, there are so many sources of variability in this process (due to the various assumptions and
the multiple levels of indirect calculations) that the error added by linear approximations is not likely to
be dominant. The result of this calculation probably should not be given the same degree of confidence
(in the general, not the statistical, sense) allowed to the other derived parameters.
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4. SUMMARY

This first volume of the overall report derives uncertainty relationships for those measured and
derived parameters important to INEEL high-power battery testing. These relationships can be used to
calculate measurement uncertainties for a battery test station or other measurement devices using these
same parameters and a comparable measurement approach. The relationships for directly measured
parameters (temperature, current, and voltage) are generally expressed as a percentage of the full-scale
range of the measurement channel. Relationships for derived parameters are commonly a function of the
actual values of one or more direct measurements, and the concept of measurement range is not
meaningful for many of them, especially where time integrals are involved. Thus, the derived parameter
uncertainties are generally given as a percentage of reading. To apply these relationships, some
combination of manufacturer�s specifications, design information, and uncertainty test results will
generally be required. Note that the results are all expressed in terms of a standard deviation, and an
appropriate multiplier must be used to give the desired confidence level for the results (e.g., 2x for 95%
confidence).

One or more subsequent volumes of this report will be prepared to apply these relationships to
specific types of INEEL battery laboratory test stations and to document the testing that will be required
to supplement or confirm manufacturer�s uncertainty specifications. Note that this volume, Volume 1,
develops the theoretical background for aliasing and defines aliasing errors. However, the actual potential
for aliasing in INEEL test stations depends on equipment design and application; thus, the issue of
whether aliasing error must be included in uncertainty calculations is treated later.
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