Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America

Outline

- Verview of the EV Project
 - Project objectives
 - Product specs
 - Current status
- Purpose of the paper
- Results: Nissan LEAF driving and charging behavior in 2011

The EV Project

World's largest EV infrastructure deployment project

- Build mature EV charging infrastructure in 14 US regions
- Study infrastructure deployment process, Customer driving and charging behavior, impact on electric grid
- Create a learning laboratory to understand the infrastructure deployment requirements for the first 1 million grid-connected electric drive vehicles

The EV Project

- Deploy >13,000 residential and public EVSE units
- Enroll >8,000 privately owned Nissan LEAF battery electric vehicles and Chevrolet Volt extended range electric vehicles
- Deployment from Oct 2010 Dec 2013
- INL data collection phase from Jan 2011 Dec 2013

Project Partners

Sponsor

Primary Partners

ECOtality North America

Nissan North America

Chevrolet

Idaho National Laboratory

The EV Project Locations

Blink AC Level 2 EVSE Enrolled in The EV Project through December 2011

Nissan LEAF[™] Specs

- Battery electric vehicle
- > 24 kWh Li-ion battery pack

- AC level 2 (3.3 kW) charge rate via J1772 connector
- DC level 2 (50 kW) charge rate via CHAdeMO connector
- Navigation screen interface and website for charge start/end scheduling
- Data acquisition via vehicle telematics

Chevrolet Volt Specs

- All-electric capable EREV
- 16 kWh Li-ion battery pack

- AC level 2 (3.3 kW) charge rate via J1772 connector
- Navigation screen interface, website, and smart phone app for charge start/end scheduling
- Data acquisition via vehicle telematics

Blink EVSE Specs

AC level 2 residential and commercial EVSE

- 240 VAC single phase, 7.2 kW
- Single J1772 connector per EVSE
- Networked with data collection
- Touch screen and website charge scheduling

9

- RFID authentication
- DC level 2 commercial fast charger
- 480 VAC 3 phase, 60 kW
- Two CHAdeMo connectors per charger
- Networked with data collection
- Touch screen user interface, RFID authentication

2012-01-0199

Deployment at End of 2011 3,785 EVSE (467 publically available)* 3,629 LEAFs, 218 Volts*

Number of EV Project EVSE Installed Number of EV Project Vehicles Enrolled to Date^{*} to Date* 1000 1200 1000 800 Leaf 800 600 600 Volt 400 400 200 200 0 San Diego san Francisco 0 San Diego San Francisco Dallasten Washington state Oregon chatanooga 4notville Memphis Nashville TUCSON Phoenit $\mathcal{A}_{\mathcal{C}}$ Dallastru Memphis Neshville oregon Chattano088 Knotville Washington state Phoenit S. Houston TUCSON * Varies from manuscript due to refinement of reporting criteria SAE International

2012-01-0199

Purpose of Paper

- Paper describes early driving and charging behavior of EV Project Nissan LEAF drivers
- Serves as baseline for comparison to behavior observed later in the project as driver habits and charging infrastructure mature
- Future works will evaluate of charging infrastructure placement and impact of vehicle charging on the electric grid

Influences on Behavior

- Early adopters, early market
- Limited public charging opportunities
- Drivers new to Nissan LEAF, new to electric vehicles

Nissan LEAF Driving Statistics

Number of vehicles with matching residential EVSE	2,903
Number of trips	1,454,220
Total distance driven (mi)	10,000,316
Mean / median trip distance (mi)	6.9 / 4.0
Mean / median distance driven per vehicle day driven (mi)	30.3 / 26.8
Mean / median number of trips between charging events	4.2 / 3.0
Mean /distance driven between charging events (mi)	28.8 / 27.1

2012-01-0199

Trip Distance

Distribution of Trip Distance

Trip distance (mi)

Driving between charging events

Distance driven between charging events (mi)

Distance driven per day

Distance driven per vehicle day driven (mi)

Nissan LEAF Charging Statistics

Total number of charging events	347,222
Mean / median number of charging events per vehicle day driven	1.05 / 0.99

Charging Events per Day

Distribution of Vehicle Average Number of Charging Events per Day Driven

Number of Charge Events per Vehicle Day Driven

Nissan LEAF Charging Location

Frequency of Charging by Charging Location

- >70% of vehicles charged at least once away from home
- Most of those vehicles charged at 5 or more distinct locations, such as:
 - Shopping centers
 Office buildings
 - Health clubs and spas

Other homes

- Bars and restaurants
- Small number of vehicles charged exclusively away from home
- Mix of locations was similar for vehicle with high and low charging frequency

Nissan LEAF Charging Completeness

Conclusions

- On average, LEAFs charged frequently with respect to time and range
 - ~1 charge per day
 - ~30 miles between charging events
 - charging started with 20 80% SOC in pack
- Most charging done at home but away-from-home charging was explored
- Averages are not enough -- distributions show wide variety of charging and driving behavior from vehicle to vehicle

Remember...

- Vehicle drivers were early in ownership experience
 - Limited public charging opportunities in 2011

Additional Information

Quarterly and project-to-date reports and other information available at AVTA website:

http://avt.inl.gov/evproject.shtml

Acknowledgements

This work is supported by the U.S. Department of Energy's EERE Vehicle Technologies Program

INL/CON-10-18967

2012-01-0199