U.S. Department of Energy's Vehicle Technologies Program -

Fully Charged 2012 International EV Summit – The EV Project Update

Jim Francfort – Idaho National Laboratory

Fully Charged 2012 International EV Summit Dublin, Ireland July 11, 2012

This presentation does not contain any proprietary or sensitive information

Outline

- Participants, goals and testing experience
- Data processes and data security
- EV Project
 - Description and data parameters
 - Project status
 - Leaf, Volt, and EVSE benchmarking results
 - Bulk of presentation
- Potential grid impacts
- Other electric drive vehicle research activities
- Summary
- Future work

Idaho National Laboratory (INL)

- Eastern Idaho based U.S. Department of Energy (DOE) Federal research laboratory
- 890 square mile site with 4,000 staff
- Support DOE's strategic goal:

- Increase U.S. energy security and reduce the nation's dependence on foreign oil
- Multi-program DOE laboratory
 - Nuclear Energy
 - Energy Critical Infrastructure Protection
 - Homeland Security and Cyber Security
 - Advanced Vehicles and Battery Development
 - Fossil, Biomass, Wind, Geothermal and Hydropower Energy

AVTA Participants and Goals

- INL manages the Advanced Vehicle Testing Activity's (AVTA) field testing of advanced technology light-duty vehicles for DOE
 - AVTA is part of DOE's Vehicle Technologies Program
 - ECOtality provides testing support via DOE's National Energy Testing Laboratory
- Test partners include electric utilities, Federal, state and local government agencies, private companies, and individual vehicle owners
- The AVTA goal: Petroleum reduction and energy security
 - Confusing people with facts via testing regimes
 - Providing benchmark data to DOE, technology modelers, R&D programs, vehicle manufacturers (via VSATT), and target and goal setters
 - Assist fleet managers, via Clean Cities, FEMP and industry gatherings, in making informed vehicle and infrastructure deployment and operating decisions

Vehicle / Infrastructure Testing Experience

- 48 million test miles accumulated on 8,200 electric drive vehicles representing 114 models
- EV Project: 4,700 Leafs and Volts, 6,200 EVSE (electric vehicle supply equipment)
 - 30.3 million test miles
 - 865,000 charge events, 7,300 MWh
- PHEVs: 14 models, 430 PHEVs, 4 million test miles
- EREVs: 1 model, 150 EREVs, 900,000 test miles
- HEVs: 21 models, 52 HEVs, 6.2 million test miles
- Micro hybrid (stop/start) vehicles: 3 models, 7 MHVs, 485,000 test miles
- NEVs: 24 models, 372 NEVs, 200,000 test miles
- BEVs: 47 models, 2,000 BEVs, 5 million test miles
- UEVs: 3 models, 460 UEVs, 1 million test miles
- Other testing includes hydrogen ICE vehicle and infrastructure testing

5

INL Vehicle/EVSE Data Management Process

Data Security, Protection and Use

- All vehicle, EVSE, and personal information raw data protected by NDAs (Non Disclosure Agreements)
 - Limitations on how proprietary data can be distributed, stored, and used
 - No raw data can or will be distributed by INL
 - Raw data, in both electronic and printed formats, is not shared with DOE in order to avoid exposure to FOIA
- Vehicle and EVSE data collection would not occur unless the above limitations are strictly adhered by INL
- The AVTA has used data loggers on vehicles and EVSE (electric vehicle supply equipment) since 1993 to benchmark vehicle and charging equipment profiles

EV Project Locations and Goal

- 18 current locations with more being added
- Goal: Build and study mature charging infrastructures and take the lessons learned to support the future streamlined deployment of grid-connected electric drive vehicles
- ECOtality is the EV Project lead, with INL, Nissan and GM/OnStar as significant partners
- EV Project reporting requires INL to blend three distinct data streams based on GPS and time/date stamps, and provide independent reports to DOE, ECOtality, project participants, industry, and the general public

EV Project – EVSE Data Parameters Collected per Charge Event

- Data from ECOtality's Blink EVSE network
- Unique ID for Charging Event
- Unique ID Identifying the EVSE
- Date/Time Stamp
- Connect and Disconnect Times
- Start and End Charge Times
- Maximum Instantaneous Peak Power
- Average Power
- Total energy (kWh) per charging event
- Rolling 15 Minute Average Peak Power
- And other non-dynamic EVSE information (GPS, ID, type, contact info, etc.)

EV Project – Vehicle Data Parameters Collected per Start/Stop Event

- Data is received via telematics providers from Chevrolet Volts and Nissan Leafs
- Vehicle ID
- Event type (key on / key off)
- Odometer
- Battery state of charge
- Date/Time Stamp
- GPS (longitude and latitude)

• Recorded for each key-on and key-off event

EV Project – Vehicle Deployments / Miles

- 4,278 Leafs (6/24) and 428 Volts (4/01) reporting data
- 4,706 vehicles and growing
- 30.3 million total miles
- 105,000 test miles per day

EV Project – EVSE Deployment and Use

- 4,634 Res. EVSE
- 1,623 non-Res EVSE
- 6,257 total EVSE
- 865,000 charge events
- 3,500 charge events per day
- Non-Residential includes DCFC
- Above as of 6/24/12
- Data is continuously back-filled

EV Project – Total Charge Energy (MWh)

6,888 MWh residential

- 401 MWh nonresidential
- 7,300 MWh total electricity charged
- 26 MWh used for charging per day
- Vehicle efficiency cannot be accurately calculated using total vehicle miles and total energy
- Non-EV Project vehicles sometimes charge at EV Project EVSE
- EV Project vehicles may charge at 110V or other 240V non-EV Project EVSE

EV Project – Overview Report 1st Quarter

- Vehicles and charging infrastructure deployed to date 1st quarter 2012 and data received by INL
- Charging infrastructure
 - 5,432 units installed
 - 665,968 charging events
 - 5,069 AC MWh

- Vehicles
 - 4,066 Leafs
 - 427 Volts
 - 22.6 million miles

وساعا استعال حاكل

14

EV Project – Vehicle Usage Report

Vehicle Usage – 1st quarter 2012

	<u>Leafs</u>	<u>Volts</u>
 Number of vehicles 	2,987	317
 Number of Trips 	773,602	76,425
 Distance (thousands) 	5,558 mi	610 mi
 Average (Ave) trip distance 	7.2 mi	8.0 mi
 Ave distance per day 	30.2 mi	36.4 mi
 Ave number (#) trips between charging events 	3.8	3.0
 Ave distance between charging events 	27.4 mi	24.1 mi
 Ave # charging events per day 	1.1	1.5

Note that per day data is only for days a vehicle is driven

EV Project – Leaf Usage Report (1st ¹/₄ 2012)

 Battery state-of-charge quarterly trends may indicate greater driver confidence in vehicle range and EVSE availability

Charging Event Starting SOC (%)

 SOC is also available for Volts

EV Project – Leaf Usage Report (1st ¹/₄ 2012)

- Regional variations in charge behavior
- Possible rich versus non-rich public charge environment impacts

 Data is also available for Volts

EV Project – Leaf Usage Report (1st 1/4 2012)

Miles

- Regional variations in drive profiles
- Need to be compared to ICE vehicle travel patterns (if data available)

فسلبا استعلا ملئل

18

() ENERG

EV Project – Leaf Usage Report 5 Quarters

 Seasonal variations may not be significant yet, given low number of vehicles and "early adapters" in early quarters

- Charging Availability
- National Data
- Range of Percent of Charging Units with a Vehicle Connected vs. Time of Day
- 1st quarter 2012
- 3,324 residential and 955 publicly available Level 2 EVSE
- 10 DC fast chargers
- 51,476 values calculated just for 1st quarter 2012 infrastructure (Infra.) report

- Charging Demand
- National Data
- Range of Aggregate Electricity Demand vs. Time of Day (AC MW)
- 1st quarter 2012
- 3,324 residential and 955 publicly available Level 2 EVSE
- 10 DC fast chargers
- Time of day kWh rates are influencing charging start times as measured by AC MW demand

- Residential Level 2 Weekday EVSE 1st Quarter 2012
- Time of day kWh rates clearly influence charge patterns

- National Data 1st quarter 2012
 - Ave time vehicle connected R2 WD
 - Ave time vehicle connected R2 WE
 - 2.4 hours Ave time vehicle drawing power R2 WD
 - Ave time vehicle drawing power R2 WE 2.0 hours
 - Ave energy per charge event R2 WD 8.7 AC kWh
 - Ave energy per charge event R2 WE 7.3 AC kWh
 - Ave time vehicle connected P2 WD 6.3 hours
 - Ave time vehicle connected P2 WE 4.1 hours
 - Ave time vehicle drawing power P2 WD 2.1 hours
 - Ave time vehicle drawing power P2 WE 1.9 hours
 - Ave energy per charge event P2 WD 7.3 AC kWh
 - Ave energy per charge event P2 WE 6.6 AC kWh
- Yes, this is an ugly slide
- R: residential, P: public, WD: weekday, WE: weekend, 2: Level 2 EVŚE () ENERG

11.4 hours

11.8 hours

- Percent of public EVSE deployed is increasing (22%)
- However, use is increasing at a slower rate (next slide)

- Percent charge events and AC MWH use by residential and public EVSE each reporting quarter
- Percent public EVSE use (red and blue lines) is clearing increasing as it is deployed in larger numbers
- 9.1% charge events and 8.0% MWh 1st quarter 2012

U.S. Grid Impacts

• Average daily delta between peak and off peak demand

Arizona Public Service Co.	33.7%
Salt River Project	32.2%
Tucson Electric Power Co.	34.0%
LA Dept of Water & Power	37.0%
Pacific Gas & Electric Co.	35.2%
San Diego Gas & Electric Co.	39.8%
Portland General Electric Co.	35.6%
Puget Sound Energy	35.7%
Seattle City Light	33.0%
Arizona Public Service Co.	33.7%
Average above utilities	35.1%

U.S. Grid Impacts

Average daily delta between peak and off peak demand

U.S. Grid Impacts

- Average daily U.S. maximum demand is 45% higher than minimum demand = off-peak has much excess generation
- 2010 total generation was 4,125,060 GWh
- At 2,920 kWh per year (assumes approximate Leaf use)
 - 1% of generation charges 14.1 million Leafs
 - 2% of generation charges 28.3 million Leafs
 - 3% of generation charges 42.4 million Leafs
 - 4% of generation charges 56.5 million Leafs
 - 5% of generation charges 70.6 million Leafs
- Macro grid impacts are of no concern for the immediate future
- Micro grid impacts, if any, will hopefully be identified by the EV Project

Other AVTA Projects for DOE

- Other vehicle data collection activities
 - 150 Chevrolet Volt EREVs
 - 108 Chrysler Ram Pickup PHEVs
 - 21 Ford Escape Prototype PHEVs

- 20 Quantum PHEV Escape conversions
- 5 different US Postal Service electric delivery vehicle conversions
- Field and laboratory fast charge study compares DC fast charging and Level 2 charging impacts on battery life in 6 vehicles
- Above all equipped with lithium traction batteries

More AVTA Projects for DOE

- Mass impacts on fuel efficiency of HEVs, ICEVs and BEVs
- Conducting testing of "dumb" and "smart" EVSE
- Initiated wireless charging test program
- Benchmarking ChargePoint America project with 2,453 EVSE deployed, 223,000 charge events & 1,500 AC MWH
- Other EVSE providers have started to provide charging data to INL
- Initiated first responders training program with the National Fire Prevention Association and NHTSA
- Battery mule test vehicle provides field testing of traction battery packs at any power and efficiency level

EV Project Summary To Date

- EV Project vehicles connected much longer than needed to recharge opportunities to shift charging times
- Significant residential Level 2 EV Project charging occurs off-peak with charge-starts occurring at the midnight starts of super off-peak kWh rates
- Significant opportunities to fully understand how the public uses public versus non-public infrastructure
- Revenue models for public charging being introduced impacts?
- Only about 30% of EV Project data collected to date
- "Normal" research project process requires:
 - Design and execute the project, data collection completed, data analyzed, and finally, reports issued at completion of experiment
- INL/ECOtality needs to completely collect all data before definitively reporting seasonal trends and behaviors

Future EV Project Data Analysis Subjects

- Pricing elasticity TOU rate influences?
- Regional and seasonal demographics and charging behaviors?
- Density of residential and non-residential EVSE as input to local micro distribution studies – transformer failures?
- Charge control preferences vehicle, Blink and web based, and scheduled versus random?
- Rich public versus non-rich EVSE charging behaviors?
- Level 2 EVSE versus DCFC behaviors?
- Travel corridor versus convenience charging at stores?
- Length of vehicle ownership and miles per day / week / charge?
- Non-residential subcategories (public and work parking)?
- Etc., etc., etc.?

Acknowledgement

This work is supported by the U.S. Department of Energy's EERE Vehicle Technologies Program And this presenter is very grateful for their support

More Information

http://avt.inl.gov

This presentation can be found in the publications section of the above website

INL/CON-12-26525

