daho National Laboratory

U.S. Department of Energy's Vehicle Technologies Program -

Plug-in Electric Vehicles (PEVs) & the EV Project Results to Date

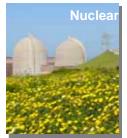
Jim Francfort – Idaho National Laboratory

EV Update Portland, Seattle and Bellevue April 2012

This presentation does not contain any proprietary or sensitive information

Outline

- Background, participants, testing experience
- Data process and security
- EV Project
 - Description and data parameters
 - Leaf and EVSE results (bulk of presentation)
- PEV charging as a percent of U.S. generation
- Volt results
- Ford Escape Advanced Research Vehicle results
- Chrysler Ram PHEV results
- Hymotion Prius results
- Other research activities
- Summary



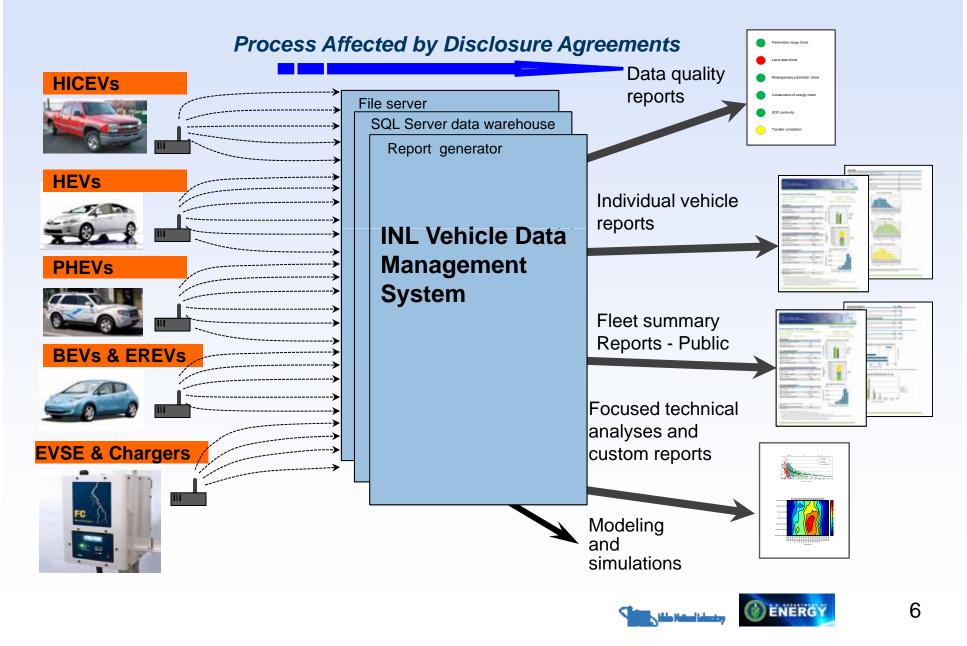
Idaho National Laboratory (INL)

- Eastern Idaho based U.S. Department of Energy (DOE) Federal laboratory
- 890 square mile site with 4,000 staff
- Support DOE's strategic goal:

- Increase U.S. energy security and reduce the nation's dependence on foreign oil
- Multi-program DOE laboratory
 - Nuclear Energy
 - Fossil, Biomass, Wind, Geothermal and Hydropower Energy
 - Advanced Vehicles and Battery Development
 - Energy Critical Infrastructure Protection
 - Homeland Security and Cyber Security

AVTA Participants and Goals

- The INL portion of this work is performed in support of DOE's Advanced Vehicle Testing Activity
- Participants
 - Part of DOE's Vehicle Technologies Program (EERE)
 - The INL conducts the light-duty vehicle portion of the AVTA per DOE guidance
 - Many of these testing activities are conducted with ECOtality North American
 - Support also provided to DOE Clean Cities and FEMP
- The AVTA goal Petroleum reduction and energy security
 - Provide benchmark data to technology modelers, research and development programs, vehicle manufacturers (via VSATT), and target and goal setters
 - Assist fleet managers in making informed vehicle and infrastructure purchase, deployment and operating decisions



Vehicle / Infrastructure Testing Experience

- 37 million test miles accumulated on 8,000 electric drive vehicles representing 100+ models
- INL is accumulating 100,000+ vehicle test miles per DAY
- EV Project: 4,200+ Leafs and Volts, 20 million test miles
- PHEVs: 14 models, 430 PHEVs, 4 million test miles
- EREVs: 1 model, 125 EREVs, 520,000 test miles
- HEVs: 19 models, 50 HEVs, 6 million test miles
- Micro hybrid (stop/start) vehicles: 3 models, 7 MHVs, 300,000 test miles
- NEVs: 24 models, 372 NEVs, 200,000 test miles
- BEVs: 47 models, 2,000 BEVs, 5 million test miles
- UEVs: 3 models, 460 UEVs, 1 million test miles
- 6,000+ EVSE with data loggers

INL Vehicle Data Management Process

Example: Vehicle/Infrastructure Data Sources

	HEV: 12 vehicle models, 1 data logger
Vehicle	HICE: 1 vehicle model, 1 data logger
time-history data	Conversion PHEVs: 8 vehicle models, 3 data loggers
(second-by- second)	Ford Escape PHEV, Ford wireless logger
	Chrysler Ram PHEV, Chrysler wireless logger
Vehicle event data	Nissan Leaf, Nissan telematics
(key-on, key-off)	Chevrolet Volt, OnStar telematics
Charger event and 15 min	ECOtality Blink networked level 2 EVSE, DC/fast chargers
time-history data	Coulomb ChargePoint networked level 2 EVSE

Managing 26 different data models

Data Security and Protection

- All raw vehicle and EVSE data, and personal information protected by NDAs (Non Disclosure Agreements) or a CRADAs (Cooperative Research And Development Agreements), resulting in:
 - Limitations on how the proprietary data can be distributed, stored, and used
 - No raw data can or will be distributed by INL
 - Raw data, in both electronic and printed formats, cannot be shared with DOE in order to avoid exposure to FOIA
- Vehicle and EVSE data collection would not occur unless the above limitations are strictly adhered by INL
- EV Project reporting requires that INL blend three very distinct data streams based on GPS and time/date stamps

EV Project Locations (Largest World-Wide PEV and EVSE Data Collection Activity)

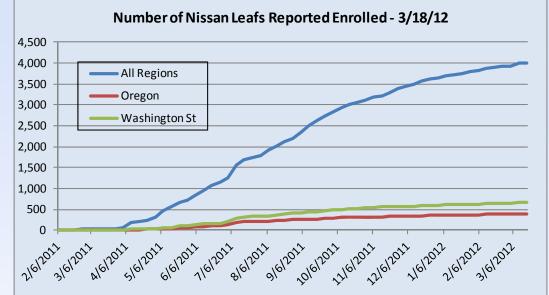
 Purpose: Build and study mature charging infrastructures and take the lessons learned to support the future streamlined deployment of grid-connected electric drive vehicles

EV Project – Charge Data Parameters Collected per Charge Event

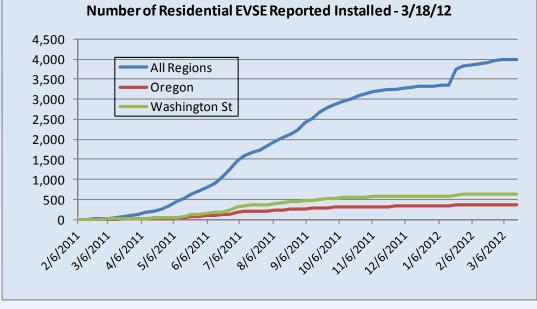
- Date/Time Stamp
- Unique ID for Charging Event
- Unique ID Identifying the EVSE may not change
- Connect and Disconnect Times
- Start and End Charge Times
- Maximum Instantaneous Peak Power
- Average Power
- Total energy (kWh) per charging event
- Rolling 15 Minute Average Peak Power
- And other non-dynamic EVSE information (GPS, ID, type, contact info, etc.)

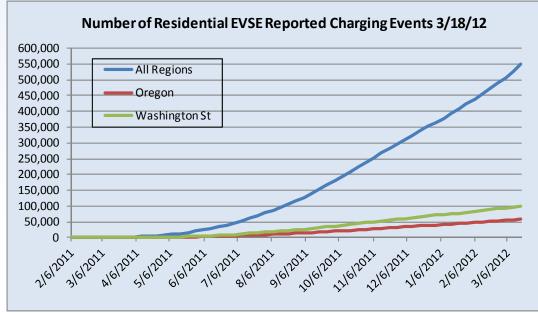
EV Project – Vehicle Data Parameters Collected per Start/Stop Event

- Date/Time Stamp
- Vehicle ID
- Event type (key on / key off)
- Odometer
- Battery state of charge
- GPS (longitude and latitude)
- Recorded for each key-on and key-off event

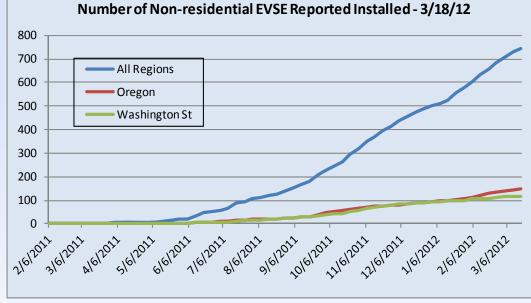


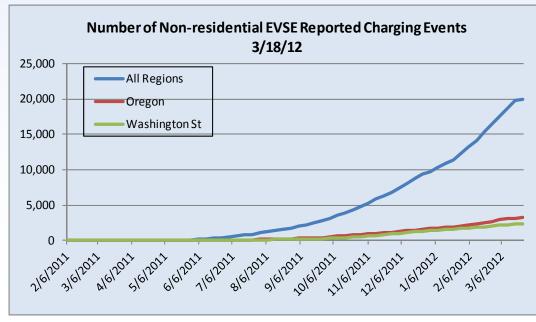
EV Project – Vehicle Deployments 3/18/12


- All regions
 - 4,008 Leafs
 - 248 Volts
- OR & WA
 - 1,058 Leafs
 - 16 Volts

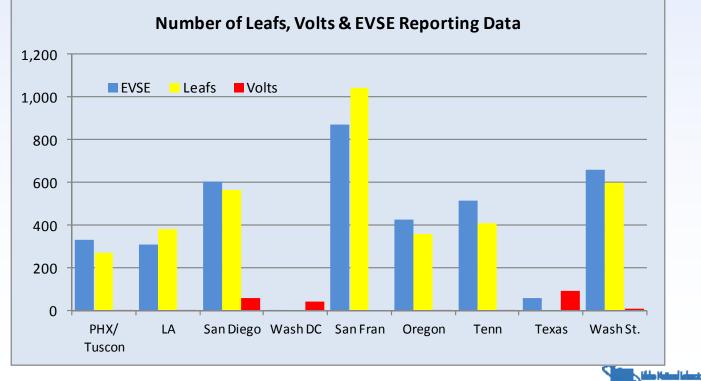


EV Project – EVSE Residential Deployments Number of Residential EVSE Reported Installed - 3/18/12 3/18/12


INL reports vehicle and EVSE data differently than ECOtality


- Units only reported when event data occurs
- INL units counts will always be lower than ECOtality counts
- INL sees units but is required to report processed data counts

EV Project – EVSE Non-Residential Deploy-Number of Non-residential EVSE Reported Installed - 3/18/12 ments 3/18/12



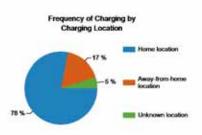
EV Project – Overview Report 4th Quarter

- Vehicles and charging infrastructure deployed 4th quarter and data reported to INL
- Charging infrastructure
 - 3,785 units installed
 - 370,517 charging events
 - 2,782 AC MWh

- Vehicles
 - 3,629 Leafs
 - 218 Volts
 - 13.7 million miles

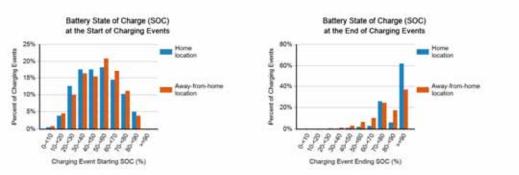
ENERGY Energy Efficiency & VEHICLE TECHNOLOGIES PROGRAM

EV Project Nissan Leaf Vehicle Summary Report


Region: ALL

Number of vehicles: 2645

Reporting period: October 2011 through December 2011


Vehicle Usage

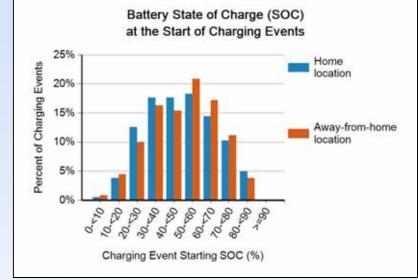
Number of trips	707,330
Total distance traveled (mi)	4,878,735
Avg trip distance (mi)	6.9
Avg distance traveled per day when the vehicle was driven (mi)	30.0
Avg number of trips between charging events	4.0
Avg distance traveled between charging events (mi)	27.7
Avg number of charging events per day when the vehicle was driven	1.1

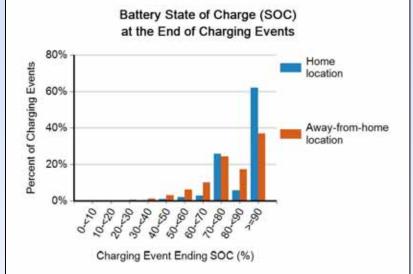
Project

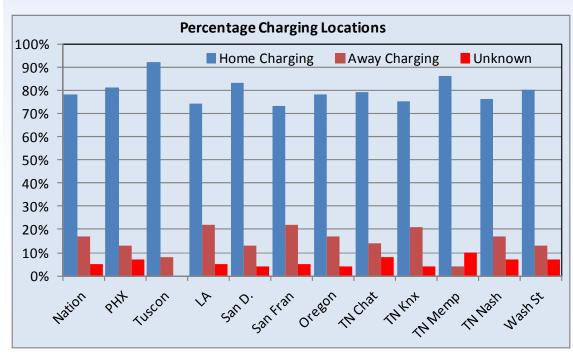
		Away-from-	m-
Charging Location and Type	Home charging location	home charging locations	Unknown charging locations
Number of charging events	137,864	29,543	8,955
Percent of all charging events	78%	17%	5%

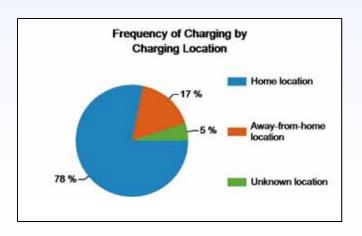
EV Project – Nissan Leaf Usage Report

- Oct Dec 2011
- Subset of 2,645 Leafs as this report requires matching vehicle and charging data
- See following slides
- 1 page nationally
- Plus 1 additional page for each region with more than 10 vehicles

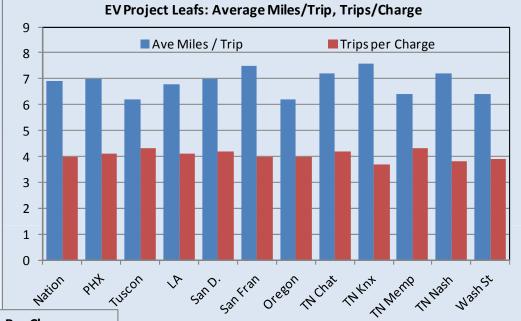


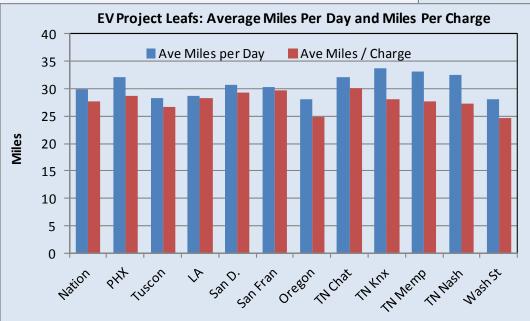

1/26/2012 2:19:55 PM INL/MIS-11-21904 Page 1 of 12


EV Project – Nissan Leaf Usage Report


- National Data
- Vehicle Usage 4th quarter 2011
 - Number of Trips 707,330 4,878,735 mi Total distance traveled (miles) 6.9 mi - Ave trip distance 30.0 mi Ave distance per day when driven 4.0 – Ave # trips between charging events Ave distance traveled between charging 27.7 mi events – Ave # charging events per day when a vehicle was driven 1.1 0 gallons Vehicle petroleum used

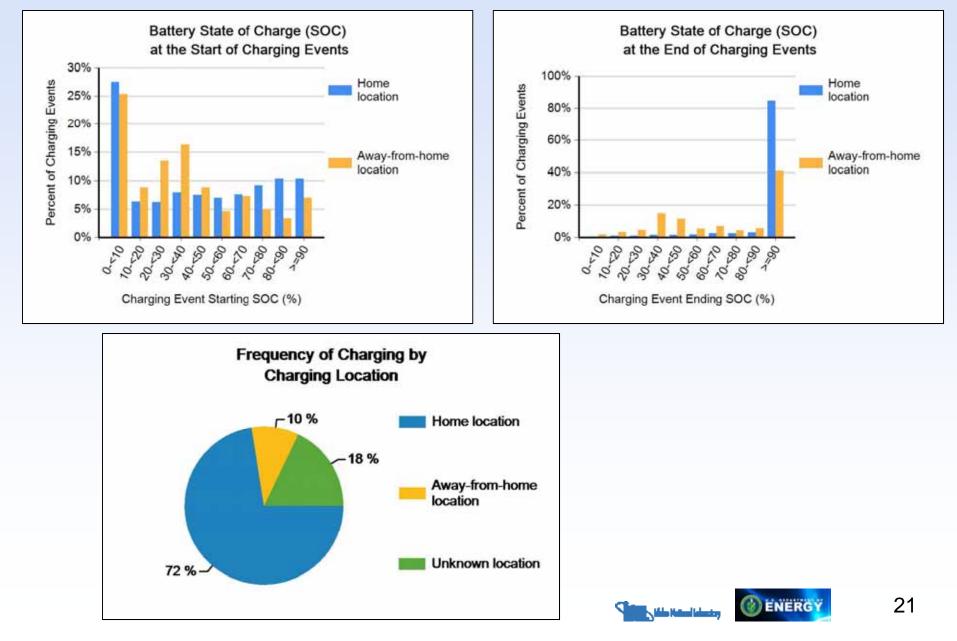
EV Project – Nissan Leaf Usage Report





EV Project – Nissan Leaf Usage Report

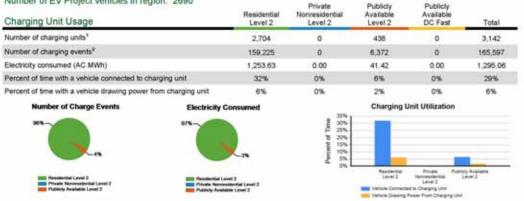
19


EV Project – Chevrolet Volt Usage Report

	National Data – 45 Volts	
D	Vehicle Usage – 4th quarter 2011	
	 Number of Trips 	13,819
	 Total distance traveled (miles) 	108,115 mi
	 Ave trip distance 	7.8 mi
	 Ave distance per day when driven 	38.0 mi
	 Ave # trips between charging events 	3.5
	 Ave distance traveled between charging events) 27.1 mi
	 Ave # charging events per day when a vehicle was driven 	1.4
	 Overall gasoline fuel economy 	131 mpg
	 Overall electrical energy consumed 	271 AC Wh/mi

EV Project – Chevrolet Volt Usage Report

ENERGY Energy Efficiency & Renewable Energy

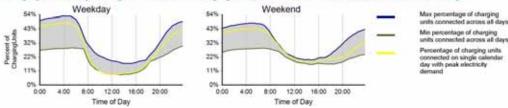

VEHICLE TECHNOLOGIES PROGRAM

EV Project Electric Vehicle Charging Infrastructure Summary Report

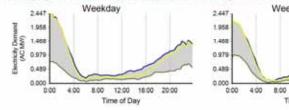
Region: ALL

Report period: October 2011 through December 2011

Number of EV Project vehicles in region: 2690


Weekend

12:00


Time of Day

16:00 20:00

Charging Availability: Range of Percent of Charging Units with a Vehicle Connected versus Time of Day³

Charging Demand: Range of Aggregate Electricity Demand versus Time of Day⁴

* Includes all charging units that were in use by the end of the reporting period

² A charging event is defined as the period when a vehicle is connected to a charging unil, during which period some power is transferred

³ Considers the connection status of all charging units every minute

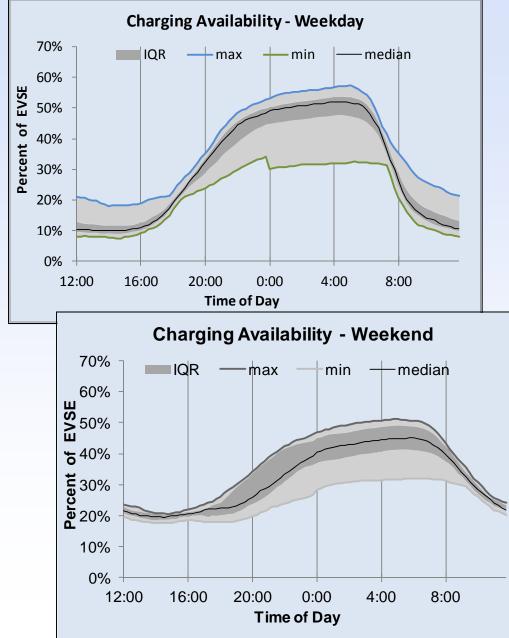
⁴ Based on 15 minute rolling average power output from all charging units

Time of Day⁴ Max electricity demand across all days Mis electricity demand across all days

all days Electricity demand on single calendar day with highest peak

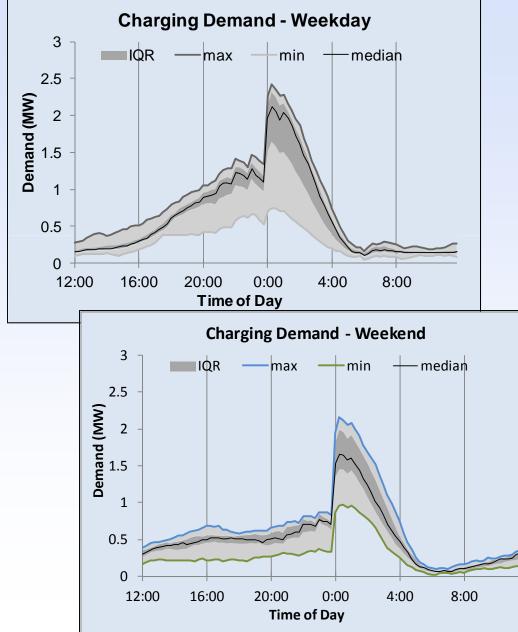
Project

2/2/2012 12:48:34 PM

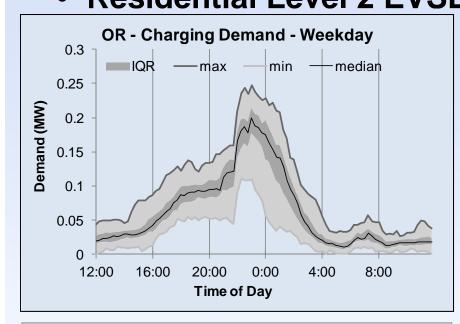

INL/MIS-10-19479 1 of 57

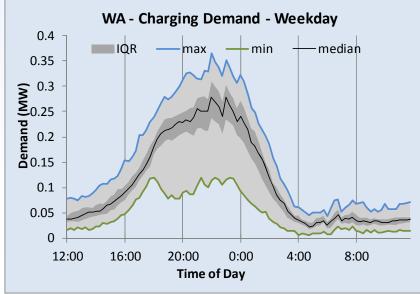
EV Project – EVSE Infra. Summary Report

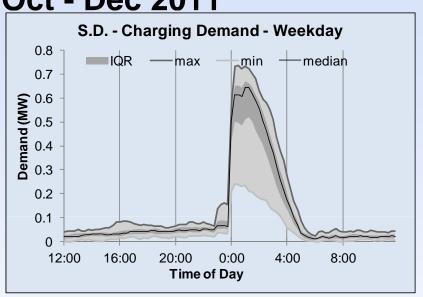
- Residential & Public
 EVSE usage
- Percent EVSE with a vehicle connected by time of day
- Percent EVSE with energy transferred by time of day
- Range of aggregate electricity demand versus time of day
- National and regional information – 4th quarter 57 pages

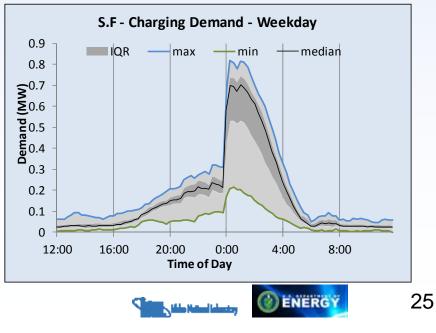

EV Project – EVSE Infra. Summary Report

- National Data
- 2,726 Residential Level 2 EVSE. Oct -Dec 2011
- Charging Availability: Range of Percent of Charging Units with a Vehicle Connected vs. Time of Day


EV Project – EVSE Infra. Summary Report




- National Data
- 2,726 Residential Level 2 EVSE. Oct -Dec 2011
- Charging Demand: Range of Aggregate Electricity Demand vs. Time of Day



EV Project – EVSE Infra. Summary Report Residential Level 2 EVSE. Oct - Dec 2011

EV Project – EVSE Infra. Summary Report

- National Data 4th quarter 2011
 - Ave time vehicle connected R2 WD 11.6 hours
 - Ave time vehicle connected R2 WE
 - Ave time vehicle drawing power R2 WD 2.3 hours
 - Ave time vehicle drawing power R2 WE 1.9 hours
 - Ave energy per charge event R2 WD
 8.3 AC kWh
 - Ave energy per charge event R2 WE
 6.9 AC kWh
 - Ave time vehicle connected P2 WD 7.7 hours
 - Ave time vehicle connected P2 WE 4.9 hours
 - Ave time vehicle drawing power P2 WD 1.9 hours
 - Ave time vehicle drawing power P2 WE 1.5 hours
 - Ave energy per charge event P2 WD
 6.7 AC kWh
 - Ave energy per charge event P2 WE 5.3 AC kWh
- R: residential, P: public, WD: weekday, WE: weekend, All: weekday/end combined

11.4 hours

The number of Leafs that can be charged at 5.538 kWh per day using a percentage of existing electricity generation

	Total 2009 Generation kWh	Number of Nissan Leafs that can be charged at 5.538 kWh per day (2021.37 kWh per year)
2009 kWh		
generation	3,950,331,000,000	
1% 2009 kWh		
generation	39,503,310,000	19,542,840
2% 2009 kWh		
generation	79,006,620,000	39,085,680
3% 2009 kWh		
generation	118,509,930,000	58,628,519
4% 2009 kWh		
generation	158,013,240,000	78,171,359
5% 2009 kWh		
generation	197,516,550,000	97,714,199

Generation Source: Electric Power Annual with data for 2009. November 23, 2010. http://205.254.135.24/cneaf/electricity/epa/epates.html

ENERGY Energy Efficiency & Renewable Energy

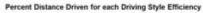
VEHICLE TECHNOLOGIES PROGRAM

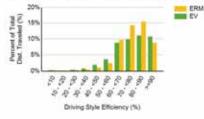
Chevrolet Volt Vehicle Demonstration

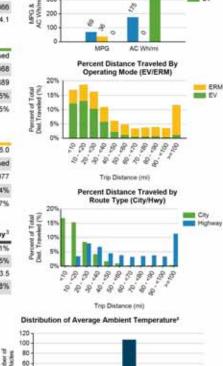
Fleet Summary I	Report
-----------------	--------

Number of vehicles: 135

All operation		
Overall gasoline fuel economy (mpg)	68.6	
Overall AC electrical energy consumption (AC Wh/mi)	175	
Average Trip Distance	12.2	
Total distance traveled (mi)	272,385	
Average Ambient Temperature (deg F)	54.1	


Electric Vehicle mode operation (EV)


Gasoline fuel economy (mpg)	No Fuel Use
AC electrical energy consumption (AC Wh/mi)	36
Distance traveled (ml)	129,38
Percent of total distance traveled	47,5
Average driving style efficiency (distance weighted) ¹	75


Extended Range mode operation (ERM)

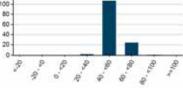
Gasoline fuel economy (mpg)	36.0
AC electrical energy consumption (AC Wh/mi)	No Elec. Used
Distance traveled (mi)	142,977
Percent of total distance traveled	52.4%
Average driving style efficiency (distance weighted) ¹	77%

	City ³	Highway ³
Percent of miles in EV operation (%)	65.1%	31.1%
Percent Number of trips	85.5%	14.5%
Average trip distance (mi)	6.9	43.5
Average driving style efficiency (distance weighted) ¹	73%	78%

Reporting period: October 2011 through December 2011

Fuel Economy & Electrical Consumption By Operating Mode

Overall


EV.

FRM

Number of vehicle days driven: 4,746

400

300

Avg Ambient Temperature (deg #)

The energy efficiency over the drive cycle is based on driving style. Driving in a more efficient manner results in a higher percentage for driving style.
 Plot shows average ambient temperature during all driving in the reporting period for each vehicle.

3 City / Highway defined per SAE J2841

2/22/2012 3:51:35 PM INL/MIS-10-20126 Page 1 of 2

Chevrolet Volt DOE ARRA Project

- 522,000 total test miles, 142 Volts
- Oct Dec 2011 Results
 - 135 Volts
 - 272,366 test miles
 - All trips, 68.6 mpg, 175 AC Wh/mi
 - EV mode, 368 AC Wh/mi. 47.5% -129,389 miles. No petroleum
 - Extended range mode, 36.0 mpg
 - Average 68.8 mpg

28

Chevrolet Volt DOE ARRA Project

- Non-public fleet drivers
- 135 Volt 3rd quarter report (Oct Dec 2011)
 - Average charging events per month
 - Average # charging events per vehicle day
 1.2
 - Average miles per charging event
 43 miles
 - Average trips between charging events
 - Average time connected per event
 - Average energy per charge event
 7.2 AC kWh
 - Average charging energy per vehicle 114 AC kWh month
 - Average trip distance city driving

Average trip distance highway driving

6.9 miles 43.5 miles

3.4 hours

16

3.5

ENERGY Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES PROGRAM

Ford Escape Advanced Research Fleet

Number of vehicles:	21
Reporting period:	Nov 09 - Feb 12

Date range of data received: 11/01/2009 to 02/29/2012 Number of vehicle days driven: 8,023

All Trips Combined

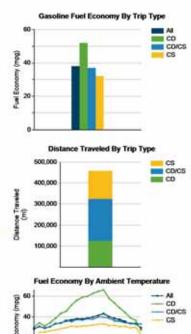
Overall gasoline fuel economy (mpg)	38
Overall AC electrical energy consumption (AC Wh/mi) ¹	99
Overall DC electrical energy consumption (DC Wh/mi) ²	67
Total number of trips	37,731
Total distance traveled (mi)	457,591

Trips in Charge Depleting (CD) mode¹

Gasoline fuel economy (mpg)	5
DC electrical energy consumption (DC Wh/mi) ⁴	16
Number of trips	21,63
Percent of trips city highway	83% 179
Distance traveled (mi)	125,88
Percent of total distance traveled	289

Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes

Gasoline fuel economy (mpg)	37
DC electrical energy consumption (DC Wh/mi) ⁶	54
Number of trips	7,135
Percent of trips city highway	38% (62%
Distance traveled (mi)	197,332
Percent of total distance traveled	43%


Trips in Charge Sustaining (CS) mode?

Gasoline fuel economy (mpg)	32
Number of trips	8,953
Percent of trips city highway	66% 34%
Distance traveled (mi)	134,376
Percent of total distance traveled	29%

Since these vehicles are flex-fuel capable, some driving events are conducted with E-85, which may decrease fuel economy results

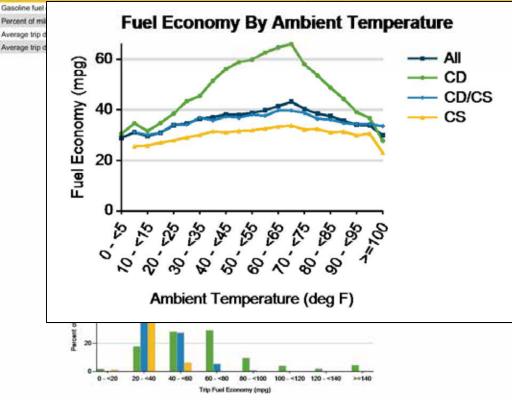
"The Ford Escape Advanced Research Fleet was designed as a demonstration of customer duty cycles related to plug-in electric vehicles. The vehicles used in this demonstration have not been optimized to provide the maximum potential fuel economy.

Ambient Temperature (deg F

Ford Escape Adv. **Research Vehicle**

- **21 Ford Escape PHEVs**
- Fleet drivers •
- 457,000 test miles
- All trips, 38 mpg, 99 AC & 67 DC Wh/mi
- Charge Depleting (CD), 52 mpg & 165 DC Wh/mi
- Charge Sustaining (CS), 32 mpg
- Plugging in = 63% increase in overall MPG when comparing **CD to CS trips**

3/2/2012 1:28:26 PM INL/MIS-11-20987 1 of 3



VEHICLE TECHNOLOGIES PROGRAM

Trips in Charge Depleting (CD) mode	City	Highway
Gasoline fuel economy (mpg)	48	57
DC electrical energy consumption (DC Whimi)	164	165
Percent of miles with internal combustion engine off	37%	12%
Average trip driving intensity (Wh/mi)	272	309
Average trip distance (mi)	3	17
Trips in Charge Depleting and Charge Sustaining (CD/CS) mode		
Gasoline fuel economy (mpg)	42	36
DC electrical energy consumption (DC Whimi)	71	51
Percent of miles with internal combustion engine off	29%	5%
Average trip driving intensity (Wh/mi)	281	327
Average trip distance (mi)	9	39

Trips in Charge Sustaining (CS) mode

Ford Escape Adv. Research Vehicle

- CD city, 48 mpg, 164 DC Wh/mi
- CD highway, 57 mpg, 164 DC Wh/mi
- CS city, 30 mpg
- CS highway, 32 mpg
- Plugging in = 60% increase in city MPG and 78% increase in highway MPG (compare CD to CS)
- City 37% CD and 23% CS miles engine off
- Highway 12% CD and 4% CS miles engine off

3/2/2012 1:28:26 PM

INL/MIS-11-20987

2 of 3

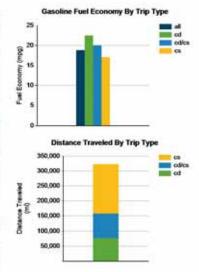
ENERGY Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES PROGRAM

Date range of data received:

Chrysler RAM PHEV Fleet

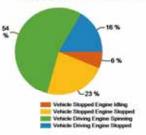
Number of vehicles:	105
Reporting period:	July 11 - Jan 12


12 Number of vehicle days driven:

Number of Veni

All Trips Combined			-
Overall gasoline fuel economy (mpg)			19
Overall AC electrical energy consumption (AC Wh/mi) ¹			107
Overall DC electrical energy consumption (DC Wh/mi) ²			67
Overall DC electrical energy captured from regenerative braking (DC Wh/mi)			46
Total number of trips			39,346
Total distance traveled (mi)			322,764
Trips in Charge Depleting (CD) mode ³			
Gasoline fuel economy (mpg)			22
DC electrical energy consumption (DC Wh/mi) ⁴			218
Number of trips			16,256
Percent of trips city highway	96%	T.	4%
Distance traveled (mi)			76,551
Percent of total distance traveled			24%
Trips in both Charge Depleting & Charge Sustaining (CD/C	S) m	od	les ⁵
Gasoline fuel economy (mpg)			20
DC electrical energy consumption (DC Wh/mi) ⁶			69
Number of trips			4,430
Percent of trips city highway	79%	1	21%
Distance traveled CD CS (mi) 2	9,110	1	51,854
Percent of total distance traveled CD CS	9%	1	16%

Trips in Charge Sustaining (CS) mode7


Gasoline fuel economy (mpg)	17
Number of trips	18,660
Percent of trips city highway	91%) 9%
Distance traveled (mi)	165,403
Percent of total distance traveled	51%

7/1/2011 to 1/31/2012

6521

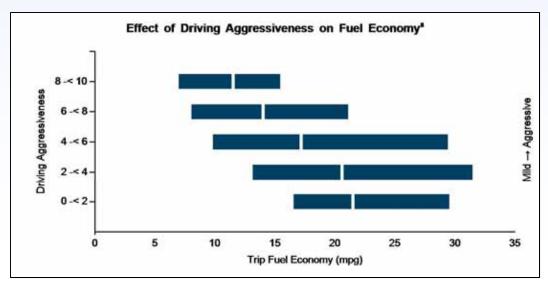
Notes: 1 - 9. Please see http://avt.ini.gov/pdf/phevichryslerreportnotes.pdf for an explanation of all PHEV Fleet Testing Report notes. This document also includes all report changes to date.

The Chrysler RAM PHEV Fleet was designed as a demonstration program of customer duty cycles related to plug-in electric vehicles and may not necessarily demonstrate optimized fael economy.

Vehicle fuel economy is based on customer usage and may not be representative of maximum potential fuel economy

2/22/2012 4:30:32 PM 1 of 3 INL/MIS-11-22875

Chrysler Ram PHEV Project


- 105 Chrysler Ram PHEVs
- July 2011 to Jan 2012
- 323,000 test miles
- All trips, 19 mpg, 107 AC & 67 DC Wh/mi. 46 DC Wh/mi captured regenerative braking
- CD, 22 mpg & 218 DC Wh/mi
- CS, 17 mpg
- Plugging in = 29% increase in overall MPG when comparing CD to CS trips

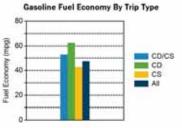
Chrysler Ram PHEV Pickups

- Rams in fleet applications
- 39% total time gas engine is stopped
 - Vehicle driving 16% time engine stopped
 - Vehicle stopped 23% time engine stopped
- 64.1 miles per charge event
- 7.8 trips per charge event
- 0.77 charge events per vehicle day
- 2.4 average hours per charge event
- 6.8 kWh average energy / charge

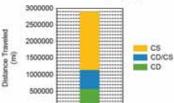
ENERGY Energy Efficiency & Renewable Energy

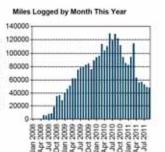
North American PHEV Demonstration

Fleet Summary Repo	rt: Hymotion Prius (V2Green data logger)
Number of vehicles:	184
Reporting Period:	Apr 08 - Sept 11


Vehicle Technologies Program

Date range of data received: 4/18/2008 to 9/30/2011 Number of days the vehicles were driven: 1254


reporting rendu.


All Trips Combined

en nige semenee	
Overall gasoline fuel economy (mpg)	48
Overall AC electrical energy consumption (AC Wh/mi) 1	52
Overall DC electrical energy consumption (DC Wh/mi) ²	38
Total number of trips	310,808
Total distance traveled (mi)	2,899,288
Trips in Charge Depleting (CD) mode 3	
Gasoline fuel economy (mpg)	62
DC electrical energy consumption (DC Wh/mi) 4	142
Number of trips	125,321
Percent of trips city / highway	87% / 13%
Distance traveled (mi)	569,686
Percent of total distance traveled	20%
Trips in both Charge Depleting and Charge Sustaining (CD/CS)	modes ⁵
Gasoline fuel economy (mpg)	53
DC electrical energy consumption (DC Wh/mi) #	49
Number of trips	22,078
Percent of trips city / highway	47% / 53%
Distance traveled (mi)	576,256
Percent of total distance traveled	20%
Trips in Charge Sustaining (CS) mode 7	
Gasoline fuel economy (mpg)	43
Number of trips	163,400
Percent of trips city / highway	77% / 23%
Distance traveled (mi)	1,756,775
Percent of total distance traveled	61%

Notes: 1 - 9. Please see http://avt.inl.gov/pdf/phev/ReportNotes.pdf for an explanation of all PHEV Fleet Testing Report notes.

13962

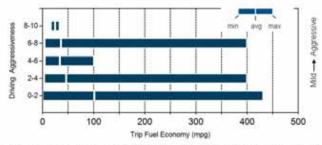
299.452

1

Hymotion Prius PHEV Conversion

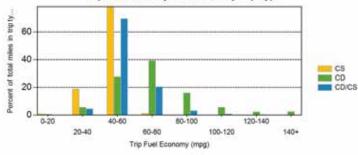
- 184 vehicles with GridPoint data logger
- 2.9 million total mostly fleet test miles
- CD 62 mpg and 142 DC Wh/mi
- CS 43 mpg
- Plugging in = 44% increase in overall MPG when comparing CD to CS trips
- CD 33% city & 15% Hwy trips engine off
- CS 23% city & 8% Hwy trips with engine off

Number of trips when the plug-in battery pack


was turned off by the vehicle operator

turned off by the vehicle operator (mi)

Distance traveled with plug-in battery pack


Trips in Charge Depleting (CD) mode	City	Highway	
Gasoline fuel economy (mpg)	60	66	
DC electrical energy consumption (DC Wh/mi)	165	109	
Percent of miles with internal combustion engine off	32%	15%	
Average trip aggressiveness (on scale 0 - 10)	1.8	1.8	
Average trip distance (mi)	3.0	15.1	
Trips in both Charge Depleting and Charge Sustaining (CD/CS) modes			
Gasoline fuel economy (mpg)	53	53	
DC electrical energy consumption (DC Wh/mi)	79	44	
Percent of miles with internal combustion engine off	26%	9%	
Average trip aggressiveness (on scale 0 - 10)	1.9	1.6	
Average trip distance (mi)	8.7	41.5	
Trips in Charge Sustaining (CS) mode			
Gasoline fuel economy (mpg)	36	46	
Percent of miles with internal combustion engine off	22%	8%	
Average trip aggressiveness (on scale 0 - 10)	2.0	1.7	
Average trip distance (mi)	3.5	35.3	

Effect Of Driving Aggressiveness on Fuel Economy This Year

Aggressiveness factor is based on accelerator pedal position. The more time spent during a trip at higher accelerator pedal position, the higher the trip aggressiveness.

2

Trip Fuel Economy Distribution By Trip Type

MonthlyReportAll Hymotion Prius (V2Green data logger)

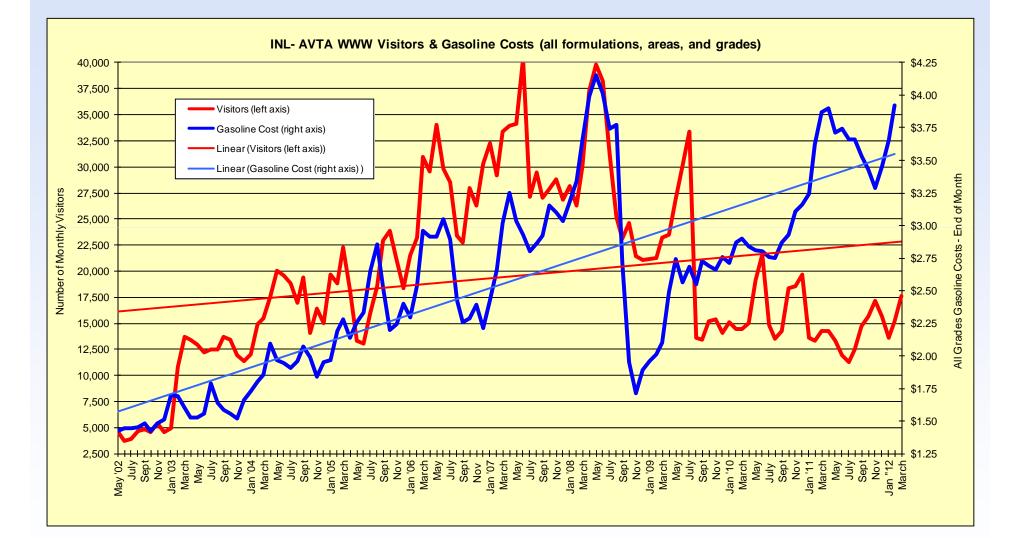
6/13/2011 1:43:39 PM

Hymotion Prius PHEV Conversion

- CD city, 60 mpg, 165 DC Wh/mi
- CD highway, 66 mpg, 109 DC Wh/mi
- CS city, 36 mpg
- CS highway, 46 mpg
- Plugging in = 67% increase in city mpg and 44% increase in highway mpg when comparing CD to CS
- CD 33% city & 15% Hwy trips engine off
- CS 23% city & 8% Hwy trips with engine off

Other INL Data Collection Projects

- Conducting mass impacts on fuel efficiency for HEV, ICEV and BEV technologies
- Fast charge study compares Fast vs Level 2 charging impacts on battery life in vehicles and laboratory tests
- Seven conductive Level 2 EVSE recently benchmarked
- Developing wireless charging test program
- 20 Lithium PHEV Escape Quantum conversions same format as Ford Escapes
- DOD support, including JBLM and Andrews AFB
- Five USPS electric long life vehicles (ELLV) conversions track, dynamometer, and fleet tested



Summary – Based on Early Data

- Most residential Level 2 EV Project charging occurs offpeak to date
- EV Project vehicles connected much longer than needed to recharge - opportunities to shift charging times even further
- Significant EV Project charge-starts occur at the midnight+ start of super off-peak kWh rates
- EV Project is accumulating 100,000 miles of data per day. Significant opportunities to fully understand how the public uses public versus non-public infrastructure
- Today's grid-connected electric drive technologies result in 29% to 100% reductions in petroleum use
- INL needs to complete collect data before reporting seasonal trends and behaviors

Public Interest

Acknowledgement

This work is supported by the U.S. Department of Energy's EERE Vehicle Technologies Program

More Information http://avt.inl.gov

INL/MIS-12-25426

39