Battery Power 2012

September 18-19, 2012 (3:15-4:00 pm) Speaker: Colin Read Location: Hyatt Denver Tech Center, Denver, CO

Battery Power 2012, an international conference highlighting the latest developments and technologies in the battery industry, being held September 18-19, 2012 in Denver, CO. This 10th annual event features more than 40 presentations on portable, stationary and automotive battery technology, as well as battery manufacturing, materials and research & development. Topics include new battery designs, emerging technologies, battery materials, power management, charging and testing systems, battery health, as well as the latest market trends affecting the industry.

September 2012

ecotality

blick

The leader in clean electric vehicle transportation.

Safe Harbor Statement

As provided by the "Safe Harbor Statement under the Private Securities Litigation Reform Act of 1995," ECOtality, Inc. cautions the audience that this presentation includes forward-looking statements. Actual results might differ materially from those projected in the forward-looking statements. Additional information concerning factors that could cause actual results to materially differ from those in the forward-looking statements in ECOtality's financial statements filed with the Securities and Exchange Commission.

Agenda

- ECOtality Overview
 - Blink Chargers
- The EV Project Introduction
- LEAF vs. Volt
- Initial macro trends
- Residential Lessons Learned
 - Installation and Permitting
 - Impacts of TOU pricing
- Commercial Lessons Learned
 - Installation and ADA
 - DC Fast Charging

ECOtality Overview

Unmatched market experience and insights

- 20 year history as leading EV consultant and fast-charger supplier
- 12+ million miles of vehicle testing on more than 200 advanced fuel vehicles
- 38 million miles of data collection in The EV Project to date (August 2012)

Largest network of EV smart chargers

- The EV Project (valued at ~\$230M) is funding initial development of Blink Network
- 8,500+ chargers installed as of August 2012 (~5,500 residential)
- Intelligent and Connected Charging Solutions
 - Most advanced EVSE currently on the market
 - Iconic design capable of branding and real time media and messaging
- Commercial relationships with leading national retailers and restaurants
 - Walmart, Best Buy, Kroger, Macy's, Sears, IKEA and others
- Fast charging history for industrial and Airport GSE
 - 6,000+ chargers installed over the 14+ years
 - 20 international airports

Blink Chargers

Level 2 Residential

Level 2 Commercial

Blink Connected Chargers

Blink Level 2 & DC Fast Chargers

The Blink Network of residential and public chargers allows connectivity demanded in today's market and data consolidation for the consumer

- Smartest EVSE with internet connectivity
- Unique and convenient (installation flexibility) binary design
- Level 2 uses J1772 standard EV connector
- DC Fast Charger utilizes CHAdeMo connector
- Smart meter capability
- Touch screen interface
- Multiple modes of communications
 - Wi-Fi, cellular (CDMA), 802.15 protocol, LAN
- Blink Mobile app for locating chargers/viewing status
- Access fees for all commercial level 2 EVSE
- DC Fast Charger features a LCD Display for media & advertising

Blink End User Features

The EV Project

60+ EV Project Partners Include:

Objectives

- Collect & analyze data on EV use
- Establish a scalable & viable infrastructure
- Pilot various revenue models

Philadelphia

EVP Data Overview

ANEN. MORTHAN SEITIN NOITTIN

EVP to date: February 2011 - August 2012

- 38+ million miles of data collection in The EV Project to date
 - 113,000 miles per day
 - 1.3 miles per second
- More than 1 million charge events
- Over 1.7 million gallons of gas saved
- Over 2,900 metric tons of CO2 avoided
- Over 8,080 MWh charged residentially
- Over 570 MWh charged commercially

Q2 snapshot (April 1- June 30)

- 4,963 vehicles enrolled (4,322 LEAF & 676 Volts)
- 7,086 residential & publicly EVSE

The EV Project Lessons Learned

Lessons Learned White Papers

- DC Fast Charge-Demand Charge Reduction (May 2012)
- The EV Micro-Climate Planning Process (May 2012)
- Signage (April 2012)
- Greenhouse Gas (GHG) Avoidance and Fuel Cost Reduction (June 2012)
- *First Responder Training* (March 2011)
- Accessibility at Public EV Charging Locations (October 2011)
- Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV
 Project (April 2012)
- A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in The EV Project (May 2012)

Lessons Learned

More to come...

- Need for Commercial Charging
- Pricing of Commercial Charging
- Residential Installation Process
- Commercial Installation Process
- EV Energy Metering
- Residential Permitting
- Commercial Permitting

www.TheEVproject.com/documents

Los Angeles, California, May 6–9, 2012 First Los Angeles, California, May 6–9, 2012 First Los Angeles, California, May 6–9, 2012 First Los Angeles, California, May 6–9, 2012 Support State California Control Contr	EV	/\$26
First Look at the Impact of Electric Vehicle Charging on the Electric Grid in The EV Project ¹ ² Coulity North America, 499.5, 201 Avc., Ploonix, 42, 5909, sechogicanality.com to North and Laboratory, 2351.9 Boulevard, Jakabo Falls, 10, 83413, dan accelled alging or, john.marriejtant.gov in the North Alexandre, 2351.9 Boulevard, Jakabo Falls, 10, 83413, dan accelled alging or, john.marriejtant.gov to North Alexandre, 2351.9 Boulevard, Jakabo Falls, 10, 83413, dan accelled alging or, john.marriejtant.gov ingi infrastructure demonstration, called The EV Project. ECOUAlity has partnered with Nissan North rice, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 0 Nissan LEAPs [™] and Chevrolet Volts and over 10,000 charging systems in 18 regions across the dot States. This paper summarizes usage of residential charging units in The EV Project, based on data circle through the end of 2011. This information is provided to help analysts assess the impact on the rice dire dravity adopter charging of grid-connected electric drive vehicles. ethod of data aggregation was developed to summarize charging unit usage by the means of two ice: charging availability and charging demand. Charging availability is plotted to show the percentage unging units connected to a vehicle over time. Charging demand is plotted to show the percentage unging units connected to a vehicle over time. Charging demand is plotted to show there is the right EV Project regions were examined to identify regional differences. In Nashville, where EV Project eipants do not have time-of-use electricity mats, demand increases each evening as charging alivity increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In Su ciccio, where the majority of EV Project participants have the option of choosing at time-of-use at the other electric utility, demand spikes at 00:00. This coincides with the beginning of the off-pead inity rate period. Demand peaks at 00:00. This coincides with the beginn	Los Angeles, Califo	prnia. May 6-9, 2012
First Look at the Impact of Electric Vehicle Chargins on the Electric Grid in The EV Project. Stephen Schey ¹ , Don Scoffield ² , John Smar ² ¹ COality North America, 430 S. 2nd Ave., Phoonic, 42 83003, aschey@ecnality.com the National Laboratory, 2351 N Boalevard, Haho Falts, 10 83415, don.acoffield@iml.gor, John.smar@iml.gor Trate Table That and the Company of the EV Project. ECOtality has partnered with Nissan North rica, Genral Motos, the Idaho National Laboratory, and others to deploy and collect data from over 0 Nissan ELFAF TM and Chevrolet Volts and over 10,000 chargin gystems in 18 regions across the of Nissan ELFAF TM and Chevrolet Volts and over 10,000 chargin gystems in 18 regions across the rica Genral Motos, the Idaho National Laboratory, and others to deploy and collect data from over 0 Nissan ELFAF TM and Chevrolet Volts and over 10,000 chargin gystems in 18 regions across the electric bring and and the coll of summarize charging unit usage by the means of two ice: charging availability and charging demand. Charging availability is plotted to show the percentage againg unit sconected to a vehicle over time. Charging demand is plotted to show charging demand e electric grid over time.	Los migeres, cuilgo	,
Stephen Schey ¹ , Don Scoffield ² , John Smart ² ¹² COulity North Imerica, 499 S. 2nd Ave, Phoonix, 42 S1093, sechogiacoulity.com In National Laboratory, 2351 N Boulevard, Jahob Falls, 10 83415, don.acdfield@inl.gov, Johnsmart@Inl.gov fract Tract Tatis was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle ging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North rica, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 0 Nissan LEAFs [™] and Chevrolet Volts and over 10,000 charging systems in 18 regions across the dot States. This paper summarizes usage of residential charging units in The EV Project, based on data cied through the end of 2011. This information is provided to help analysts assess the impact on the ric grid of early adopter charging of grid-connected electric drive vehicles. ethod of data aggregation was developed to summarize charging unit usage by the means of two ics: charging availability and charging demand. Charging availability is plotted to show the percentage anging units connected to a vehicle over time. Charging demand is plotted to show charging demant e electric grid over time. ging availability for residential charging units is similar in each EV Project region. It is low during the steadily increases in evening, and remains high at night. Charging demand, however, varies by region EV Project regions were examined to identify regional differences. In Nashville, where EV Project eignants do not have time-of-use electricity mates, demand increases each evening as charging ability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In Sar cisco, where the majority of EV Project participants have the option of choosing estima-form-form- eric <i>EEP</i> (hattery electric whick), demonstration, infrastructure. ENERTIC Demand peaks at 00:00. This coincides with the beginning of the off-pead ricity rate period. Demand peaks at 00:00. This	A First Look at the Impact o the Electric Grid	f Electric Vehicle Charging on in The EV Project
Tract Tast Tast Tast Tast Tast Tast Tast Tas	Stephen Schey ¹ , Don ¹ ECOtality North America, 430 S. 2nd Aw ² Idaho National Laboratory, 2351 .N Boulevard, Idaho I	Scoffield ² , John Smart ² z, Phoenix, AZ 85003, sschey@ccotality.com Falls, ID 83415, don.scoffield@inl.gov.john.smart@inl.gov
tality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle ging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan Nort rica, General Motors, the Idaho National Laboratory, and others to deploy and collect data from ove Nissan LEAFs TM and Chevvolet Volts and over 10,000 charging systems in 18 regions across the destates. This paper summarizes usage of residential charging units in The EV Project, based on data cted through the end of 2011. This information is provided to help analysts assess the impact on the ric grid of early adopter charging of grid-connected electric drive vehicles. ethod of data aggregation was developed to summarize charging unit usage by the means of two ics: charging availability and charging demand. Charging availability is plotted to show the percentage arging units connected to a vehicle over time. Charging demand is plotted to show charging demands e electric grid over time. ging availability for residential charging units is similar in each EV Project region. It is low during the steadily increases in evening, and remains high at night. Charging demand, however, varies by region EV Project regions were examined to identify regional differences. In Nashville, where EV Project cipants do not have time-of-use electricity rates, demand increases each evening as charging a acisco, where the majority of EV Project participants have the option of choosing a time-of-use rate from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-pear ricity rate period. Demand peaks at 01:00. wrdz: <i>BEV (hattory electric vehicle), demonstration, infrastructure</i> Introduction	Abstract	
ping infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North rica, General Motors, the Idaho National Laboratory, and others to deploy and collect data from ove 0 Nissan LEAFs TM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the do States. This paper summarizes usage of residential charging units in The EV Project, based on data cted through the end of 2011. This information is provided to help analysts assess the impact on the ric grid of early adopter charging of grid-connected electric drive vehicles. ethod of data aggregation was developed to summarize charging unit usage by the means of two ics: charging availability and charging demand. Charging availability is plotted to show the precentage areging units connected to a vehicle over time. Charging demand is plotted to show charging demands electric grid over time. ging availability for residential charging units is similar in each EV Project region. It is low during the steadily increases in evening, and remains high at night. Charging demand, however, varies by region EV Project regions were examined to identify regional differences. In Nashville, where EV Project cipants do not have time-of-use electricity rates, demand increases each evening as charging ability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In Sa cisco, where the majority of EV Project participants have the option of choosing a time-of-use rati from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peat ricity rate period. Demand peaks at 01:00. web <i>BEV (hattory electric whicle), demonstration, infrastructure</i> : InterOduction	ECOtality was awarded a grant from the U.S. Depa	rtment of Energy to lead a large-scale electric vehicle
rica, General Motors, the Idaho National Laboratory, and others to deploy and collect data from ove 0 Nissan LEAFs [™] and Chovrolet Volts and over 10,000 charging systems in 18 regions across th ed States. This paper summarizes usage of residential charging units in The EV Project, based on data ted through the end of 2011. This information is provided to help analysts assess the impact on the ric grid of early adopter charging of grid-connected electric drive vehicles. ethod of data aggregation was developed to summarize charging unit usage by the means of two ics: charging availability and charging demand. Charging availability is plotted to show the percentage arging units connected to a vehicle over time. Charging demand is plotted to show charging demands electric grid over time. ging availability for residential charging units is similar in each EV Project region. It is low during the steadily increases in evening, and remains high at night. Charging demand, however, varies by region EV Project regions were examined to identify regional differences. In Nashville, where EV Project cipants do not have time-of-use electricity rates, demand increases each evening as charging ability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In Sa cisco, where the majority of EV Project participants have the option of choosing a time-of-use trait from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peal ricity rate period. Demand peaks at 01:00. Partice <i>BEV</i> (hattery electric vehicle), demonstration, infratructure Introduction	charging infrastructure demonstration, called The E	V Project. ECOtality has partnered with Nissan North
D Nisan LEAFs [™] and Chevrolet Volts and over 10,000 changing systems in 18 regions across the dd States. This paper summarizes usage of residential charging units in The EV Project, based on data circle through the end of 2011. This information is provided to help analysts assess the impact on the ric grid of early adopter charging of grid-connected electric drive vehicles. ethod of data aggregation was developed to summarize charging unit usage by the means of two ics: charging availability and charging demand. Charging availability is plotted to show the percentage arging units connected to a vehicle over time. Charging demand is plotted to show charging demans e electric grid over time. ging availability for residential charging units is similar in each EV Project region. It is low during the stadily increases in evening, and remains high at night. Charging demand, however, varies by region EV Project regions were examined to identify regional differences. In Nashville, where EV Project cipants do not have time-of-use electricity rates, demand increases each evening as charging ability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In Sar cisco, where the majority of EV Project participants have the option of choosing a time-of-use ratiform their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peal ricity rate period. Demand peaks at 01:00. arets: BEV (hattery electric whick), demonstration, infrastructure Introduction	America, General Motors, the Idaho National Labor	ratory, and others to deploy and collect data from over
ed States. This paper summarizes usage of residential charging units in The EV Project, based on data cted through the end of 2011. This information is provided to help analysts assess the impact on the rice grid of early adopter charging of grid-connected electric drive vehicles. ethod of data aggregation was developed to summarize charging unit usage by the means of two fice: charging availability and charging demand. Charging availability is plotted to show the percentage arging units connected to a vehicle over time. Charging demand is plotted to show charging demann e electric grid over time. ging availability for residential charging units is similar in each EV Project region. It is low during the steadily increases in evening, and remains high at night. Charging demand, however, varies by region EV Project regions were examined to identify regional differences. In Nashville, where EV Project ionth to identify regional differences and nevering as charging ability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In Sar cisco, where the majority of EV Project participants have the option of choosing a time-of-use ratify rate period. Demand peaks at 01:00. wrk: <i>BEV (hattory electric whick), demonstration, infrastructure</i> Introduction	5,000 Nissan LEAFs TM and Chevrolet Volts and o	ver 10,000 charging systems in 18 regions across the
cted through the end of 2011. This information is provided to help analysts assess the impact on the ric grid of early adopter charging of grid-connected electric drive vehicles. ethod of data aggregation was developed to summarize charging unit usage by the means of two ics: charging availability and charging demand. Charging availability is plotted to show the percentage anging units connected to a vehicle over time. Charging demand is plotted to show charging demand e electric gird over time. ging availability for residential charging units is similar in each EV Project region. It is low during the steadyl processes in evening, and remains high at night. Charging demand, however, varies by region EV Project regions were examined to identify regional differences. In Nashville, where EV Project cipants do not have time-of-use electricity rates, demand increases each evening as charging at cisco, where the majority of EV Project participants have the option of choosing a time-of-use ratio from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peal ricity rate period. Demand peaks at 01:00. wrdz: <i>BEV (hattory electric vehicle), demonstration, infrastructure</i> Introduction gas prices are changing consumer preferences and	United States. This paper summarizes usage of resid	lential charging units in The EV Project, based on data
ethod of data aggregation was developed to summarize charging unit usage by the means of two ics: charging availability and charging demand. Charging availability is plotted to show the percentage anging units connected to a vehicle over time. Charging demand is plotted to show charging demand e electric girl over time. ging availability for residential charging units is similar in each EV Project region. It is low during the steadily increases in evening, and remains high at night. Charging demand, however, varies by region EV Project regions were examined to identify regional differences. In Nashville, where EV Projec cipants do not have time-of-use electricity rates, demand increases each evening as charging ability increases, starting at about 16:00. Demand peaks in the 2000 hour on weekdays. In San cisco, where the majority of EV Project participants have the option of choosing a time-of-use rati from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peal ricity rate period. Demand peaks at 01:00. werk: <i>BEV</i> (hattery electric vehicle), demonstration, infrastructure Interoduction gas prices are changing consumer preferences and	collected through the end of 2011. This information electric grid of early adopter charging of grid-connect	a is provided to help analysts assess the impact on the cted electric drive vehicles.
ics: charging availability and charging demand. Charging availability is plotted to show the percentage arging units connected to a vehicle over time. Charging demand is plotted to show charging demand e electric gird over time. ging availability for residential charging units is similar in each EV Project region. It is low during the steadily increases in evening, and remains high at night. Charging demand, however, varies by region EV Project regions were examined to identify regional differences. In Nashville, where EV Project cipants do not have time-of-use electricity rates, demand increases each evening as charging ability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San cisco, where the majority of EV Project participants have the option of choosing a time-of-use rate from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak ricity rate period. Demand peaks at 01:00. wrds: <i>BEV</i> (hattery electric whick), domonstration, infrastructure Introduction gas prices are changing consumer preferences and	A method of data aggregation was developed to s	summarize charging unit usage by the means of two
arging units connected to a vehicle over time. Charging demand is plotted to show charging demand e electric gird over time. ging availability for residential charging units is similar in each EV Project region. It is low during the steadily increases in evening, and remains high at night. Charging demand, however, varies by region EV Project regions were examined to identify regional differences. In Nashville, where EV Project ejants do not have time-of-use electricity rates, demand increases each evening as charging ability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In Sar cisco, where the majority of EV Project participants have the option of choosing a time-of-use rat from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak ricity rate period. Demand peaks at 01:00. wrk: <i>BEV</i> (hattery electric vehicle), demonstration, infrastructure Introduction gas prices are changing consumer preferences and	metrics: charging availability and charging demand.	Charging availability is plotted to show the percentage
ging availability for residential charging units is similar in each EV Project region. It is low during the steadily increases in evening, and remains high at night. Charging demand, however, varies by region EV Project regions were examined to identify regional differences. In Nashville, where EV Projec cipants do not have time-of-use electricity rates, demand increases each evening as charging ability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In Sai cisco, where the majority of EV Project participants have the option of choosing a time-of-use rate from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak ricity rate period. Demand peaks at 01:00. wrds: BEV (hattory electric whicle), demonstration, infrastructure: Introduction gas prices are changing consumer preferences and	of charging units connected to a vehicle over time. on the electric gird over time.	Charging demand is plotted to show charging demand
steadily increases in evening, and remains high at night. Charging demand, however, varies by region EV Project regions were examined to identify regional differences. In Nashville, where EV Projec cipants do not have time-of-use electricity rates, demand increases each evening as charging ability increases, starting at about 16:00. Demand peaks in the 2000 hour on weekdays. In Sar cisco, where the majority of EV Project participants have the option of choosing a time-of-use rate from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak ricity rate period. Demand peaks at 01:00. work: <i>BEV</i> (hattery electric whicle), demonstration, infrastructure Introduction gas prices are changing consumer preferences and	Charging availability for residential charging units is	s similar in each EV Project region. It is low during the
EV Project regions were examined to identify regional differences. In Nashville, where EV Projec cipants do not have time-of-use electricity rates, demand increases each evening as charging ability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In Sar cisco, where the majority of EV Project participants have the option of choosing a time-of-use rate from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak ricity rate period. Demand peaks at 01:00. ords: <i>BEV</i> (battery electric whicle), demonstration, infrastructure Introduction gas prices are changing consumer preferences and	day, steadily increases in evening, and remains high	at night. Charging demand, however, varies by region.
cipants do not have time-of-use electricity rates, demand increases each evening as charging ability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In Sar cisco, where the majority of EV Project participants have the option of choosing a time-of-use rate from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak ricity rate period. Demand peaks at 01:00. ords: <i>BEV</i> (battery electric whicle), demonstration, infrastructure Introduction gas prices are changing consumer preferences and	Two EV Project regions were examined to identify	regional differences. In Nashville, where EV Project
ability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San cisco, where the majority of EV Project participants have the option of choosing a time-of-use rate from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak ricity rate period. Demand peaks at 01:00. ords: <i>BEV</i> (hattory electric whicle), demonstration, infrastructure Introduction gas prices are changing consumer preferences and	participants do not have time-of-use electricity	rates, demand increases each evening as charging
cisco, where the majority of EV Project participants have the option of choosing a time-of-use rate from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peal ricity rate period. Demand peaks at 01:00. wrds: BEV (hattery electric vehicle), demonstration, infrastructure Introduction gas prices are changing consumer preferences and	availability increases, starting at about 16:00. Der	mand peaks in the 20:00 hour on weekdays. In San
from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peal ricity rate period. Demand peaks at 01:00. <i>ards: BEV (hattery electric vehicle), demonstration, infrastructure</i> Introduction gas prices are changing consumer preferences and	Francisco, where the majority of EV Project partic	ipants have the option of choosing a time-of-use rate
ords: BEY (battery electric vehicle), demonstration, infrastructure Introduction gas prices are changing consumer preferences an	plan from their electric utility, demand spikes at 00 electricity rate period. Demand peaks at 01:00.	:00. This coincides with the beginning of the off-peak
Introduction gas prices are changing consumer preferences and	Keywords: BEV (battery electric vehicle), demonstration,	infrastructure
	1 Introduction	gas prices are changing consumer preferences and
terns with global climate change, United industry direction toward more fuel-efficient and alternative energy vehicles. Nicean and Gamera	Concerns with global climate change, United	industry direction toward more fuel-efficient and alternative energy vehicles. Nissan and General
s reliance on foreign oit, increasing global and for petroleum-based fuels, and increasing generation of plug-in electric vehicles (PEV)	States reliance on foreign oil, increasing global demand for petroleum-based fuels, and increasing	Motors have successfully introduced a new generation of plug-in electric vehicles (PEV).

LEAF vs. Volt

Nissan LEAF vs. Chevrolet Volt

- Avg distance traveled per day (mi):
- Avg trip distance (mi):
- Avg # of trips between charging:
- Avg distance between charging (mi): 1.5
- Avg # of charging events/day:

- Avg distance traveled per day (mi): 30.6 39.6 • 7.2
- Avg trip distance (mi): 8.0
- 3.2 Avg # of trips between charging:
- 26.0 Avg distance between charging (mi): 28.1
 - Avg # of charging events/day:

3.9

1.1

Battery State of Charge (SOC) - LEAF

- Range Anxiety
 - LEAFs plug-in away from home at a higher SOC than at home
 - Average SOC at start of commercial plug-in is ~15% higher than at home
- Majority of all commercial charge events end at a full state of charge

Battery State of Charge (SOC)- Volt

- "Gas Anxiety" Volt/PHEV drivers are showing an aversion to using gasoline
- Largest portion of starting SOC is 0-10%
- End SOC is almost always a full (90-100%)
- Little difference from residential to commercial charging behavior
- Drivers are fully depleting their electric range and plugging in often

Macro Trends

Initial Trends

Residential	Weekday	Weekend	Overall
% of time with EV connected to EVSE	35%	38%	36%
% of time EV drawing power from EVSE	8%	7%	7%
Avg time with EV connected per charge event (Hr)	11.6	11.6	11.6
Avg time with EV drawing power per charge event	2.5	2.1	2.4
Avg electricity consumed per charge event (AC kWh)	8.7	7.5	8.4
Avg # of charge events per EVSE per day	0.78	0.70	0.75

Commercial	Weekday	Weekend	Overall
% of time with EV connected to EVSE	6%	4%	6%
% of time EV drawing power from EVSE	3%	2%	2%
Avg time with EV connected per charge event (Hr)	6.1	4.1	5.7
Avg time with EV drawing power per charge event	2.3	2.2	2.3
Avg electricity consumed per charge event (AC kWh)	7.7	7.7	7.7
Avg # of charge events per EVSE per day	0.28	0.16	0.25

Home Charging Decreasing

% Char	ging @ Home
	LEAF / Volt
Q4:	78% / 72%
Q1:	74% / 54%
Q2:	76% / 79%
% Char	ging @ Away
	LEAF / Volt
Q4:	22% / 28%
Q1:	27% / 47%
Q2:	24% / 21%

Driving distance is steadily increasing

Lessons Learned: Residential

Residential Install Costs

- Average residential installation cost ~\$1,375
- Individual installations vary widely
- Some user bias to lower costs

Marlets In Ascending Order Of Residential Installation Cost	Number of Installations	Average Installation Cost		Variation From Project Average
Tennessee (entire State)	542	\$	1,113.07	-19.0%
Arizona (Phoenix & Tucson)	357	\$	1,148.88	-16.4%
Washington DC	3	\$	1,197.44	-12.9%
Oregon (Portland, Eugene, Coralvls & Salem)	465	\$	1,229.06	-10.6%
Washington (Seattle & Olympia)	730	\$	1,289.56	-6.2%
Maryland	39	\$	1,311.75	-4.5%
Washington	80	\$	1,321.36	-3.8%
Virginia	38	\$	1,341.01	-2.4%
San Fransisco	1254	\$	1,386.13	0.9%
Texas (metro Houston & Dallas)	128	\$	1,422.77	3.5%
San Diego	726	\$	1,593.91	16.0%
Los Angeles	415	\$	1,794.64	30.6%

Residential Permits

- Permit timeliness has not been a problem
- Majority are over-the-counter
- Permit fees vary significantly

Region	Count of Permits	Average Permit Fee	Minimum Permit Fee	Maximum Permit Fee
Arizona	66	\$96.11	\$26.25	\$280.80
Los Angeles	109	\$83.99	\$45.70	\$218.76
San Diego	496	\$213.30	\$12.00	\$409.23
San Francisco	401	\$147.57	\$29.00	\$500.00
Tennessee	322	\$47.15	\$7.50	\$108.00
Oregon	316	\$40.98	\$12.84	\$355.04
Washington	497	\$78.27	\$27.70	\$317.25

Residential: Availability / Demand

Range of % of EVSE with EV Connected vs. Time of Day

Range of Aggregate Electricity Demand vs. Time of Day

Nashville

San Diego (SDG&E)

San Francisco (PG&E)

Lessons Learned: Commercial

Commercial: Availability / Demand

Range of Aggregate Electricity Demand vs. Time of Day

Lessons Learned: Commercial

- ADA significantly drives cost
 - Accessible charger
 - Van accessible parking
 - Accessible route to facility
 - Inconsistent application of ADA

Lessons Learned: Commercial

- Permit fees and delays are significant
 - Load studies
 - Zoning reviews

Region	Count of Permits	Average Permit Fee	Minimum Permit Fee	Maximum Permit Fee
Arizona	72	\$228	\$35	\$542
Los Angeles	17	\$195	\$67	\$650
San Diego	17	\$361	\$44	\$821
Texas	47	\$150	\$37	\$775
Tennessee	159	\$71	\$19	\$216
Oregon	102	\$112	\$14	\$291
Washington	33	\$189	\$57	\$590

Lessons Learned: DC Fast Charge

DC FC Barriers

- Demand and energy costs are significant for some utilities
 - 25¢/kWh
 - \$25/kW
- Some utilities offer commercial rates without demand charges
- Others incorporate a 20 kW to 50 kW demand threshold
- Nissan Leaf is demand charge free in a few service territories

No Demand Charges - Nissan Leaf Pacific Gas & Electric CA **City of Palo Alto** Alameda Municipal Power Silicon Valley Power **Tucson Electric Power** AZ OR **Eugene Water & Electric Board** Lane Electric Co-op Middle Tennessee Electric TN **Duck River Electric** Harriman Utility Board Athens Utility Board **Cookeville Electric Department Cleveland Utilities** Nashville Electric Service **EPB** Chattanooga Lenoir City Utility Board Volunteer Electric Cooperative Murfreesboro Electric Sequachee Valley Electric Cooperative **Knoxville Utility Board** Maryville Fort Loudoun Electric Memphis Light Gas and Water Division

Demand Charges

Recurring Nissan Leaf demand charges (60 kW) are significant in many utility service territories

Utility Demand Charges - Nissan Leaf			Cost/mo.	
CA	Glendale Water and Power	\$	16.00	
	Hercules Municipal Utility:	\$	377.00	
	Los Angeles Department of Water and Power	\$	700.00	
	Burbank Water and Power	\$	1,052.00	
	San Diego Gas and Electric	\$	1,061.00	
	Southern California Edison	\$	1,460.00	
AZ	TRICO Electric Cooperative	\$	180.00	
	The Salt River Project	\$	210.50	
	Arizona Public Service	\$	483.75	
OR	Pacificorp	\$	213.00	
WA	Seattle City Light	\$	61.00	

Mitigation Technologies

- Limit demand of DC FCs
 - 20 kW maximum charge rate
 - 5 kWh in any 15 minute period
 - Other output rates (25, 30 kW?)
 - Incorporate w/ facility energy management systems
 - Variable TOU restrictions by site
 - Utilize up to the peak capacity
- Energy Storage assisted DC FC
 - Demand reduction
 - Grid ancillary services
 - Renewables absorption
- Revised Utility Tariffs
 - Demand responsive charging
 - Aggregated charger loads

Publically Available EVSE Demand

EOtality

ECOtality, Inc. Post Montgomery Center 1 Montgomery Street, Suite 2525 San Francisco, CA 94104

P: 415-992-3000

www.ECOtality.com www.theEVproject.com www.blinknetwork.com

