- This presentation was given for the Navigant Research Webinar on Fast DC Charging for Electric Vehicles
- <u>http://www.navigantresearch.com/webinar/fast-dc-charging-for-electric-vehicles</u>
- April 9, 2013

Lessons Learned on the EV Project and DC Fast Charging

Garrett Beauregard Executive Vice President and General Manager, eTec Labs

April 9, 2013

ECOtality Company Overview

Leading Hardware, Software and R&D for electric transportation Diversified revenue base of 3 complementary business segments

Blink

- Residential, public & commercial EV charging solutions
- Contracted by U.S. Dept. of Energy for The EV Project (~\$115M)
- Over 11,000 chargers installed as of April 2013

Minit-Charger

- Fast charging electric material handling and ground support equipment
- 5,600+ chargers deployed in warehouse and distribution centers
- Reduces fuel costs while enhancing productivity and safety

ETEC Labs

- 20+ years of consulting for Advanced Transportation Testing, Evaluation, Research & Analysis
- Awarded \$26.4M by U.S. Dept. of Energy for advanced vehicle testing
- 86 million + miles of testing on advanced vehicles & infrastructure

Blink EV Charge Stations

Membership Card

Level 2 Residential

Level 2 Commercial

DC Fast Charger

The EV Project

The largest Department of Energy EV Infrastructure Program

PROJECT MANAGER:

PROJECT SCOPE:

TOTAL VALUE:

OBJECTIVES:

ECOtality North America (eTec)

Approx. 13,000 Charging Stations 8,300 Nissan LEAFs, GM Volts, Smart ForTwo

\$230 million project

(\$115m grant from US DoE, \$115m ECOtality/Partner match)

- Plan, build and evaluate mature EV charge infrastructure
- Collect and analyze data on EV driving and charging
- Evaluate business models for public EVSE
- Generate lessons learned to guide policy makers, industry planners and investors
- Lay foundation for shift to EVs in broader market

The EV Project

Quarterly Reports Lessons Learned

EV Project Quick Facts

- Over 78,000,000 miles recorded on EVP vehicles to date
- Approximately 2,500,000 gallons of gasoline saved
- 2.2 million residential charge events
- Over 19,600 MWh energy charged into Project vehicles
- 5,700 metric Tons CO₂ avoided

Project

Quarterly Reports Lessons Learned

Chevrolet Volt

- Avg distance traveled per day (mi): 40.5
- Avg trip distance (mi):
- Avg # of trips between charging:
- Avg distance between charging (mi): 28.2
- Avg # of charging events/day:

Frequency of Charging by

Charging Location

Nissan Leaf

- Avg distance traveled per day (mi): 29.2
- Avg trip distance (mi): 6.9

3.8

- Avg # of trips between charging:
- Avg distance between charging (mi): 26.3

Frequency of Charging by

Charging Location

• Avg # of charging events/day: 1.1

8.1

3.5

1.4

blink

- •69 DC Fast Chargers installed
- •Dual port dispenser design
- •Real time communications •3G or Ethernet
- •Certified utility meter
- •CHAdeMo Certified
- •ADA compliant
- •42" Color Monitor (optional); specified advertising space

DC Fast Charge Locations

		DC FC
Region	State	Installed
Seattle	WA	5
Tacoma	WA	1
Portland	OR	11
Salem	OR	3
Santa Rosa	CA	4
North Bay Area	CA	2
Palo Alto	CA	5
East Bay Area	CA	3
San Jose	CA	3
Lost Angeles	CA	2
Santa Ysabel	CA	1
San Diego	CA	1
Phoenix	AZ	14
Nashville	TN	4
Chatanooga	TN	6
Knoxville	TN	4
	Total	69

See www.blinknetwork.com/blinkMap.html

DC Fast Charge Facts

Greatest use of Fast Chargers as of the end of Q4 2012

- Seattle 423 charge events per EVSE
- Los Angeles 314
- San Francisco 280

Highest Total AC Consumption for DC Fast Chargers

- San Francisco 18.2 MWhr
- Oregon-13.4
- Seattle 10.4

DC Fast Usage

DC Fast Usage

DC Fast Charge Barriers

- Demand and energy costs are significant for some utilities
 - 25¢/kWh (cost of energy)
 - \$25/kW (demand charges per kW)
- DC FC is demand charge free in a few service territories
- Many utility service territories have significant Demand charges

Utility Demand Charges - Nissan Leaf			Cost/mo.	
CA	Glendale Water and Power	\$	16.00	
	Hercules Municipal Utility:	\$	377.00	
	Los Angeles Department of Water and Power	\$	700.00	
	Burbank Water and Power	\$	1,052.00	
	San Diego Gas and Electric	\$	1,061.00	
	Southern California Edison	\$	1,460.00	
AZ	TRICO Electric Cooperative	\$	180.00	
	The Salt River Project	\$	210.50	
	Arizona Public Service	\$	483.75	
OR	Pacificorp	\$	213.00	
WA	Seattle City Light	\$	61.00	

DC Fast Charge Barriers

- Demand charges can have a drastic effect on per charge costs
- Example analysis using \$12/kW demand charge

Scenario	Number of Vehicles Charged/ Month	Meter Charge	Demand Charge	Energy Charge	Monthly Total	Cost per Vehicle
1	0	\$200	\$0	\$0	\$200	N/A
2	1	\$200	\$600	\$2.20	\$802.20	\$802.20
3	10	\$200	\$600	\$22	\$822	\$82.20
4	100	\$200	\$600	\$220	\$1,020	\$10.20
5	250	\$200	\$600	\$550	\$1,350	\$5.40
6	500	\$200	\$600	\$1,100	\$1,900	\$3.80

Mitigation Technologies

• Limit demand of DC FCs

- 20 kW maximum charge rate
- Other output rates (25, 30 kW?)
- 5 kWh in any 15 minute period
- Incorporate w/ facility energy management systems
 - Variable TOU restrictions by site
 - Utilize up to the peak capacity

Mitigation Technologies

• Energy Storage assisted DC FC

- Demand reduction
- Grid ancillary services
- Renewables absorption

Revised Utility Tariffs

- Demand responsive charging
- Aggregated charger loads
- Longer term--PUCs

North American Standardization

- DC Fast Charge standard confusion
 - Some Japanese OEMs have adopted the CHAdeMO standard
 - Other OEMs will adopt SAE COMBO standard
- VHS vs Beta, again
 - Will take 5-10 years to get to one common standard

Global Standardization Challenges

- Risk of stranding EV first adopters
- Lack of standard stalls deployment
- Expensive to convert & recertify DC Fast Charge equipment
- OEM & industry cooperation

Stay Tuned!

- Another year of collecting data
- More Leafs and Volts participating
- 17 more DC FC installed Q1 2013 toward 200 total
- More lessons to be learned
- Q1 2013 report released soon
- www.TheEVProject.com

This material is based upon work supported by the Department of Energy under Award Number DE-EE0002194. The project is a public-private partnership, funded in part by the U.S. Department of Energy through a federal stimulus grant and made possible by the American Recovery and Reinvestment Act (ARRA).

www.ECOtality.com

www.blinknetwork.com

