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GLOSSARY OF TERMS

Beginning of Life (BOL) — The point in time at which life testing begins. A distinction is made in
this manual between the performance of a battery at this point and its initial performance,
because some degradation may take place before the start of life testing. Analysis of the
effects of life testing is based on changes from the BOL performance.

Calendar Life — The time required to reach end of life at the reference temperature at open-circuit
(corresponding to key-off/standby conditions in the vehicle).

Cycle Life — The number of consecutive cycles consisting of a charge neutral combination of
discharge and charge pulses centered on a given state-of-charge required to reach end of
life at the reference temperature.

Degradation Model — An empirical or chemistry/physics-based model that describes the expected
degradation of a battery experiencing typical stress conditions.

Depth of Discharge (DOD) — The percentage of a device’s rated capacity removed by discharge
relative to a fully charged condition, normally referenced to a constant current discharge
at the C,/1 rate. The capacity to be used is established (fixed) at the beginning of testing,

%.

End of Life (EOL) — A condition reached when the device under test is no longer capable of
meeting the applicable USABC goals. This is normally determined from RPT results,
and it may not coincide exactly with the ability to perform the life test profile (especially
if cycling is done at elevated temperatures.) The number of test profiles executed at end
of test is not necessarily equal to the cycle life per the USABC goals.

End of Test (EOT) — The point in time where life testing is halted, either because criteria specified
in the test plan are reached, or because it is not possible to continue testing.

Error Model — A model that accounts for the difference between the measured and expected
performance. The error model combines the effects of both measurement error and
manufacturing variability.

Reference Performance Test (RPT) — A periodic assessment of battery degradation during life
testing. A reference performance test will typically yield capacity fade, power fade, and
impedance rise as a function of test time.

State of Charge (SOC) — The available capacity in a battery expressed as a percentage of actual
capacity. This is normally referenced to a constant current discharge at the C,/1 rate. For
this manual, it may also be determined by a voltage obtained via a relationship of
capacity to voltage established at beginning of life. SOC = (100 — DOD) if the rated
capacity is equal to the actual capacity, %.

Stress Conditions — The parameters that are used to accelerate aging of a battery technology, such

as temperature, state-of-charge, throughput, and pulse power. These are the explanatory
variables in the degradation model.
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BLE
BOL
CDF
DOD
EOL
EOT
LCL
LOF
MAV
MCS
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SS
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USABC
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Battery Life Estimator
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cumulative distribution function
depth of discharge

end of life

end of test

lower confidence limit
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Monte Carlo simulation
reference performance test
state of charge

sum of squares
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Battery Life Estimator Manual

1 INTRODUCTION

The purpose of this Battery Life Estimator (BLE) Manual is to assist developers
in their efforts to determine the life capability of advanced battery technologies for
automotive applications. Testing requirements and procedures have been previously
defined in manuals published under the United States Advanced Battery Consortium
(USABC) in References 1 through 5. This manual describes a standardized method of
determining calendar life with a high degree of statistical confidence based on models
and degradation data acquired from typical battery testing.

A software package (“BatteryLife.exe”) has also been developed to estimate calendar life
based on the methodology described herein. To purchase the software, users must first
download and sign the license agreement at http:/www.anl.gov/techtransfer/
Software Shop/TLVT/TLVT.html. USABC developers can acquire the software at no
cost. The degradation model presented in this manual has been included as the default
for quick implementation to a set of data. However, the software can also accommodate
any degradation model that is applicable to a particular chemistry as long as it is linear or
can be linearized by appropriate mathematical transformations.

This manual is organized in two main sections. Section 2 describes the default
statistical models implemented in the software as well as the methods for estimating
model parameters and cell life from experimental data. This section also presents a
methodology for assessing the uncertainty of the estimated cell life using Monte Carlo
simulations.  Section 3 is a user’s guide for the software tool (“BatteryLife.exe”) and
provides details on data formatting, menu navigation, and data processing. Appendix A
is an extended discussion of parameter estimation using robust linear regression. An
applied example of this life estimation methodology using data from a set of test cells is
provided in Reference 6.

2 METHODOLOGY FOR ESTIMATING CALENDAR-LIFE

This section describes a methodology for estimating the average calendar life of
various cell technologies and assessing their readiness for transition to production.
Consequently, the emphasis is placed on predicting the capability of typical (i.e.,
representative) cells to meet the USABC target of a 15-year calendar life. A two-part
model can be constructed from the experimental test data. The first part is the
degradation model that represents the average cell performance as a function of aging
over a range of stress conditions. The second part is the error model that represents the
deviation of the cell behavior relative to the average performance. The degradation
model provides a basis for the estimation of average cell life, and the error model
provides a basis for assessing the accuracy of the degradation model.

At this stage of life testing, there will generally be incomplete knowledge of the
specific degradation mechanisms or the source of the deviations between average



performance and actual measured performance. Thus, relatively simple empirical models
with few parameters should be used for life estimation, though physics-based models
could be used as well. Simple forms of a degradation model and error model that have
been successfully implemented for a variety of technologies are illustrated herein. The
methodology for estimating model parameters, assessing model accuracy, and estimating
mean cell life with associated uncertainty are also described.

2.1 Generalized Model

The use of accelerated degradation testing to verify life capability requires the
selection of performance measures that accurately reflect battery state of health. An
example performance measure is relative resistance (i.e., the cell resistance at time t
divided by the resistance at beginning of life, t = 0). The generalized model must relate
the measured cell performance at any given time to a combination of the stress factor
effects. For example, in the case of calendar-life experiments with a single stress factor
of temperature, the acquired data can be represented generically by the model shown in
Equation (1), where Y, (T;t) represents the measured performance of the i" cell after
being subjected to aging for time t at temperature T (Reference 6). The average cell
performance is represented by a degradation model, y(T;t), which is described in Section
2.2. The combined effects that are related to the unique behavior of the i" individual cell
and measurement error are represented by an error model y,(T;t), which is described in

Section 2.3.
Yi(Tst)= u(T5t)+5,(Tst) (1)
2.2 Degradation Model

The degradation model can be empirical, chemistry/physics-based, or some
combination of both. A wide variety of model forms are possible. The specific form of
the model will necessarily depend on the particular technology and set of stress factors.

In the example case of a single stress factor (temperature), a simple but useful
form for the degradation model is given by Equation (2), where f,, f5,,and p represent

the model parameters (Reference 6).
ﬂ(T;t):1+eXp{ﬂ0+ﬁ1 'Tl}'tp @)

Note that x(T;t)=1for t = 0 and then increases in value as the cell ages. Various

normalized responses (including relative resistance) are consistent with these conditions.
When the natural response decreases to zero as a function of cell age, ,u(T;t) can be

considered as a model for the inverse of the natural response. Examples of a naturally
decreasing response include relative power and relative capacity. In such cases, ,u(T;t)

can be considered as a model for inverse relative power or inverse relative capacity.



To estimate the parameters associated with the degradation model, it is useful to
re-express the model in a linear form with a log transformation as shown in Equation (3).
Once the model has been linearized, robust linear regression can be used to estimate the
model parameters (see Section 2.4).

log(y(T;t)—l): By + B, -Tl+p-10g(t) 3)

2.3 Error Model

The error model accounts for the difference between the measured performance
and expected performance. The difference is a combination of effects due to
measurement error as well as the intrinsic difference in performance between cells. Two
different approaches for determining the measurement error are discussed in this section.
One method estimates the error from the measured data, and the other method
independently determines the error based on calibration and accuracy checks of the test
equipment. The software tool (“BatteryLife.exe”) provides both options to the user for
life prediction.

2.3.1 Estimated Error Model

In the example case of a single stress factor (temperature), a useful form for the
estimated error model (Reference 6) is given by Equation (4), whered, represents a
random, cell-specific, proportional effect with variance o, andr, (t) represents the

effects of measurement error on Y, (T;t).

7i(Tit)=6, - (u(T:t)-1)+ x,(t) (4)

Using relative resistance as the performance measure, the expression for Y,(T;t) is as
shown in Equation (5), where R, (i,t) is the unknown (but true) value of the resistance

of the i™ cell at time t, and &,(t) is the specific unknown error associated with that

measurement.
Yi (T,t)= Rtrue(-lﬁt)-i_gi (t) (5)
Rtrue (I ’0) + gi (O)

The resulting error model due to measurement effects is shown in Equation (6).

Ry (ibt)+&(t) Ry, (ist)
mi(t)= Ry (,0)+£,(0) Ry, (i,0)

(6)

It is assumed that the measurement errors are independent with a relative standard
deviationof @ (i.e. o, = R, (i,O)). With this and other assumptions (Reference 6), the

variance of 7, (t), given by o, can be approximated by 2 -« .



Assuming that the mean values of, (t) and &, are zero, then within a given group

of cells that have experienced the same stresses and aging time, the mean and variance of
Y, (T;t) can be expressed as shown in Equations (7) and (8). Robust linear regression

(see Section 2.4) is used to estimate the variance model parameters (o, and o).
Mean(Y; (T:t))= (T:t) @
Var(¥,(T;t)=Var(y;(T:t)) ~ o5 - (u(T;1)-1) + o7 8)

Thus, this model of the variance within a treatment group and Reference
Performance Test (RPT) (References 1-5), implies that the expected variability in cell
performance increases as the expected level of degradation increases.

2.3.2 Independent Assessment of Measurement Error

Alternatively, the magnitude of measurement error can be estimated directly using
the uncertainty methodology developed at the Idaho National Laboratory (References 7
and 8). First, the effect of measurement error can be minimized with test equipment
calibration and verification. Calibration can be performed using the manufacturer’s
recommended procedures. Verification consists of independent measurements of test
channel voltage and current outputs at various levels within the channel full scale
operating range. The total equipment and channel error can then be determined by the
measured data and the uncertainties of the independent measurement equipment (i.e., a
digital voltmeter and shunt for current measurements). If the results from this analysis
show poor accuracy or repeatability, the test equipment should be calibrated and verified
again until the results are less than or equal to the claimed values of the manufacturer
(e.g., 0.02% of full scale repeatability).

These data are also useful in determining the uncertainty range of the performance
parameters of interest for the life prediction model. Each performance parameter (e.g.,
resistance, power, capacity, and energy) is a function of voltage and current
measurements (temperature uncertainty is treated elsewhere). The uncertainty expression
associated with that performance parameter can be determined based on the accuracy and
precision of the voltage and current measurements as determined during the initial
calibration or in-test calibration checks, and low-order Taylor Series approximations of
the performance parameter with respect to the independent voltage and current
measurements. For example, the uncertainty expression for resistance as defined in the
USABC Manuals (References 1-5) is given by Equation (9), where Vgs and Igg are the
test channel’s full scale voltage and current range, respectively; %errVear and %errlcar
are the calibration errors due to the independent digital voltmeter and shunt used to
measure the accuracy during the calibration check; and %errVsrp and %errlstp are the
standard deviations determined experimentally from the accuracy measurements.
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2.4 Robust Linear Regression

The parameters associated with both the degradation and error models are
estimated with a robust linear regression procedure because it has reduced sensitivity to
anomalous data (i.e., outliers). Consequently, the parameter estimates are not greatly
affected by the outliers. Robust regression procedures also are valuable when the error
variance is not constant across the experimental space, as is the case for the assumed
error model in Section 2.3. The particular procedure implemented in this manual
includes three iterations of weighted least-squares regression (Reference 9). For the first
iteration, ordinary least-squares regression is used (i.e., the relative weights are
identical). For subsequent iterations, the weights are based on Tukey’s biweight function
(Reference 10). More details concerning parameter estimation are provided in Appendix
A.

2.5 Life Prediction

The fitted degradation model can be used to estimate the mean lifetime of the cell
at a specified temperature for a given end-of-life criterion. Given the degradation model
provided in Equation (2), and an end-of-life criterion defined to be a 30% increase in
degradation of the performance measure (i.e., y(T ;t) becomes 1.3 at a target temperature

of To), the resulting estimated lifetime, (f,, ), is shown in Equation (10).

log(0.3)—{ﬁo +5, 'I}}

leoL = €Xp 5 (10)

2.6 Monte Carlo Simulations

Monte Carlo simulations based on the fitted degradation and error models, in
conjunction with a variant of the parametric bootstrap procedure (Reference 11), are used
to assess the uncertainty of the cell life and associated model parameters. Simulation
results provide a basis for assessing the quality of the model based on “lack-of-fit”
statistics (Section 2.7). Assuming that the forms of the degradation and error models are
accurate, the simulations can then be used to assess the uncertainty of the mean cell life
as well as the model parameters estimated from experimental data.

Using a performance measure of relative resistance as an illustration, the overall
model in Equation (1) can be expanded to the form shown in Equation (11), where j
represents the stress condition and ij represents the i cell within the j stress condition.



Yij(t) represents the measured relative resistance of the ij™ cell at time t and ,u(X j;t)
represents the expected relative resistance for cells under the " stress condition at time t.
ojj represents the random proportional effect of the ij™ cell, and T (t) represents the

effect of the random measurement errors on relative resistance associated with the ijth cell
at the initial measurement and at time t. The last term can be notionally partitioned into
two terms: 7z (t)= 4;(0)+4; (t), where A represents the effect of the individual
measurement errors on relative resistance at beginning of life and at time t. For these

simulations, the random effects, 5, 4; (O), and 4; (t), are assumed to be independent and

normally distributed each with a mean of zero and variance ofc;,a’,anda’,
respectively.

Y, ()= u(X 5t)+ 8 - (X 5t) = 1)+ 75 (1) (11)

The general approach is to repeatedly simulate the experiment while matching the
test duration, RPT frequency, experimental conditions, and number of cells per
experimental condition of the actual experiment. For each independent simulation trial
(representing a single realization of the complete experiment), different random
realizations of cell-to-cell effects and measurement errors are added to the assumed truth
provided by the degradation model that was fitted to the actual experimental data. First,
the number of stress conditions that were used (J), the number of cells tested per
condition {n ji=1: }, and the times at which the cells were measured {t, :k =1: K} are

identified. Next, the degradation model for each combination of stress condition and
measurement time can be computed with {y(X Mo ): (j =1:J )x (k =1: K)} Finally, using

this setup, a number of independent trials are completed as follows:

1. Simulate {5” :(i =1:n; )with (j=1:3 )}, where the & are sampled independently

from a normal distribution with mean zero and standard deviation, o .

2. Simulate {/1” (0): (i =1:n; )with (j=1:3 )}, where the 4; (0) are sampled

independently from a normal distribution with mean zero and standard deviation
a.

3. Simulate {/1“ (t,): (i =1:n; )with (j=1:3)and (k =1: K)}, where the 4; (t,) are
sampled independently from a normal distribution with mean zero and standard

deviation « .

4. Combine the constituent effects from Steps 1 to 3 to form the simulated data:
Y (tk )= ,u(X il )"‘ 8 - (y(X il )_ 1)"‘ z (O)+ Aj (t)
a. Ensure that Y (t,)>1



5. Model the collective set of simulated resistance data for the current trial:
a. Estimate model parameters (degradation and error)
b. Estimate average cell life
c. Compute the lack of fit sum of squares (SS, o ) (Section 2.7)

The summary statistics (e.g., standard deviations and order statistics) of model
parameters, estimated cell life, and SS,,. across trials can then be computed. The

standard deviations of the model parameters and estimated cell life are referred to as
bootstrap standard errors.

2.7 Lack-of-fit Statistic

It is also important to assess how well the degradation model fits the experimental
data (i.e., the level of performance variation observed for cells aged under a common
stress condition). Inaccuracies in the degradation model are detected by the lack-of-fit
statistic shown in Equation (12), where J is the number of stress conditions, K is the

number of RPT’s (the beginning of life RPT is denoted as RPTO), Y_j‘t is the average
performance measure (e.g., relative resistance) of the jth stress group at RPTK
corresponding to some time t (consisting of nj; cells), z ir1s the fitted degradation model
for the jth stress group at RPTK , and &ft is the fitted error model for the jth stress group at

RPTK, as shown in Equation (13). Note that Equation (12) is normalized by the product
of the number of stress conditions and RPTs (JK) to enable a comparison across different
experiments.

sS ! ii M (¥, )2 (12)
LoF 3Tk L 6_J'Ztk it — M,
62 =62-(a, 1) +6? (13)

Monte Carlo simulations (Section 2.6) based on the developed degradation and
error models are used to assess the lack-of-fit statistic. The value of SS . based on the
original data is compared with the empirical distribution of the SS - values obtained via

the simulation trials. An unusually large value for the lack-of-fit statistic (e.g., greater
than the 95™ percentile of the simulated SS, o values) is indicative of model inaccuracy.



2.8 Application to Calendar Life Data

The recommended pathway for demonstrating adequate calendar life of a battery

technology given a set of experimental data from typical USABC testing (References 1-
5) is as follows:

1.

A deterministic degradation model (Section 2.2) is developed to reflect the
average (i.e., typical) cell degradation over time as a function of various stress
factors such as temperature and state-of-charge. This model must be accurate
over the anticipated range of conditions the cells will experience. It is also
assumed that the cell technology is sufficiently advanced such that, given a
standard reference (e.g., 30°C), the model will predict a life capability exceeding
the target requirement with some significant margin (i.e., the lower confidence
bound for predicted life must exceed the 15 year goal).

An accurate error model (Section 2.3) is developed to reflect the cell-to-cell
variability in observed degradation about the average behavior. This model
accounts for variability due to measurement error as well as the intrinsic
differences between cells.

The degradation and error models from Steps (1) and (2) are used as the basis for
conducting Monte Carlo simulations (Section 2.6) to assess the lack-of-fit statistic
(Section 2.7).

If there is no evidence for lack-of-fit, the average cell life is estimated at the lower
confidence limit via the fitted degradation model.

Adequate calendar life of a battery technology is demonstrated if the lower
confidence limit bound of the estimated cell life exceeds the requirement.



3 BATTERY LIFE ESTIMATION SOFTWARE

The purpose of the BLE software package (http://www.anl.gov/techtransfer/
Software_Shop/TLVT/TLVT.html) is to facilitate the analysis of simulated and
experimental test data. The software captures all of the mathematical analysis and life-
simulation tools described in this manual, and includes the default model described in
Section 2. This section provides a description of the software contents and a user’s guide
to running the application.

3.1 System Requirements

The minimum system requirements for the BLE software package are a PC
computer with a Pentium 4 processor with at least 1 GB of memory and VGA graphics.
There should also be a minimum of 3 MB of free space on the hard disk.

The software has been extensively tested on Windows XP, but the minimum
operating system must be at least Windows 2000 (it will not work on Windows 98 or
earlier). The Microsoft .NET framework versions 1.1, 2.0, 3.0, and 3.5 must be installed
for the software to operate. These framework versions can be downloaded from the
following websites:

e Version 1.1:
http://www.microsoft.com/downloads/details.aspx?familyid=262D25E3-F589-
4842-8157-034D1E7CF3A3&displaylang=en

e Version 2.0:
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856 EACB-4362-
4B0D-8EDD-AAB15C5E04F5&displaylane=en

e Version 3.0:
http://www.microsoft.com/downloads/details.aspx?FamilylD=10CC340B-F857-
4A14-83F5-25634C3BF043&displaylang=en

e Version 3.5:
http://www.microsoft.com/downloads/details.aspx?FamilylD=333325fd-ae52-
4e35-b531-508d977d32a6&DisplayLang=en

3.2 Battery Life User Interface

The BLE software application is designed to be very user-friendly. All functions
are accessible through menus and data-entry forms. When the application starts, the
blank desktop, shown in Figure 1 will appear. The main menu consists of five choices:
File, Edit, Run, View and Help. A detailed description of these menu choices are
provided in Section 3.5.



FﬂBattery Life data analysis ;IEIEI

File Edit Run Wiew Help

Figure 1. BatteryLife.exe desktop

3.3 Equation Requirements

The data to be fit or modeled must be time-based, with time as a dependent
variable. Additionally, the modeling equation must be linearized without containing
exp(const) or In(const) terms, where const is a constant. The resulting transform
equations must each consist of only one independent variable. Consequently, the number
of transform equations for the linearized form is based on the number of independent
variables in the model equation.

For example, the expression R = A + B/T + Ct* with A, B, and C as the dependent
variables has the linear transform equations of R, 1/T, and t*. A more complex expression
such as R=Aexp(B/T)t* can be linearized to InR=InA + B/T + zIn(t), but it is not in the
proper form because of the InA term (log of a constant). The original expression should
be rewritten as R=exp(A' + B/T)t*, then linearized with InR=A' + B/T + zInt with transform
equations of InR, 1/T, and Int.



3.4 Data Formatting Requirements

It is assumed that the data to be fitted are arranged in columns (e.g., in EXCEL or
plain text) with a comma as the delimiter in plain-text files. A header row at the top of
each column must be included as well. The columns do not have to be sequential. It is
further assumed that all data to be fit or modeled are time-based and that time 1s included
as one of the columns in the discrete variable input file.

The data to be fit should be normalized to the t = 0 value for each dependent
variable of the degradation model (Section 2.2). However, the beginning of life value
(i.e., at t = 0) should not be included in the BLE software data file. If it is not removed,
the program will filter these values out as well as any dependent variable values that are
less than zero.

Table 3.1 shows part of a sample input file arranged in columns with time,
temperature, and relative resistance. Note that if there are missing measurements, as
shown in the second row of data in Table 3.1, they must be removed before starting the
data analysis and simulation program. If they are not, an error message will be displayed,
stating that there are no data available.

Table 3.1. Example of data containing a missing measurement.

Time,[Temperature,| Relative

yr K Resistance
0.1 298 1.02
0.1 298

0.1 298 1.01

0.1 308 1.03
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3.5 Software Navigation
In the accompanying description, the "P>" symbols indicate a sequence of mouse clicks.
3.5.1 File Menu

The File menu is shown in Figure 2 and consists of the following choices: New,
Open, Save, Save As, Preview Report, Print Report and Exit.

Batterr Life data analysis
File Edit Run ‘iew Help

[Z Open ctro @& simulation
E Save Chrl+5
E! SAVE 35,0,

[] Preview report

&5 Print report Chrl+P
&

Exit ChrlH+-Shift+

Figure 2. File menu

File » New P Fit. This option activates the Fit Wizard (Section 3.6.3) and allows the

user to start a new fit based on a modeling equation and an existing set of data (i.e., from
a file).

File » New P Simulation. This option activates the Simulation Wizard (Section 3.6.4)
and allows the user to start a new Monte Carlo simulation based on a modeling equation.

File » Open (Ctrl+O). This option opens an existing *.Life file. The files contain the
information needed to carry out the fit or simulation or a combination of the two. If the
application finds that there is an error in the file, such as it was created by an earlier
version of the software or is corrupt, the application will display an error. (Section 3.4)

File » Save (Ctrl+S). This option saves the existing fit / simulation information to a fit
for later use. The file is saved to the current filename or to a file called "default.Life."

File » Save As. This option saves the current fit / simulation information to a fit for
later use. The file is saved to a user-defined filename.

File » Preview Report. This option lets the user see the report on the desktop before
committing it to paper (Section 3.7.3).

File » Print Report (Ctrl+P). This option lets the user commit the fit / simulation
calculations to paper.

File > Exit (Ctrl+Shift+X). This option ends the current session.
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3.5.2 Edit Menu

The Edit Menu is shown in Figure 3 and consists of the following choices:
Equations, Life confidence limit, and Copy view to clipboard.

Battery Life data analysis
Fil= | Edit Fun VYiew Help
Equations Ckrl+E

Life confidence limit Chrl+L

Copy view to clipboard k|12

Figure 3. Edit menu

Edit » Equations (Ctrl+E). This option starts the equation editor to alter the stored
equations that are used in the current fit and/or simulation (Section 3.6.3.3).

Edit » Life confidence limit (Ctrl+L). This option changes the lower and/or upper
confidence limits that are used for the life projections (Section 3.6.2.4).

Edit » Copy view to clipboard (Ctrl+C). This option copies the contents of the current
(foremost) view to the Windows clipboard for pasting into other clipboard-aware
applications, such as EXCEL or Word. It is copied as a windows metafile if the view
contains a plot, or as HTML if the view contains text and/or data tables. Data table
displays are copied exactly as they appear on the screen.

3.5.3 Run Menu

The Run Menu is shown in Figure 4 and consists of the following choices: Fit and
Simulation.

Battery Life Data Analysis - C:htlvth default.Life

File Edit | Run Yiew Help

ZE Fit Chrl+F
Sirnulation CLrl4+5

Figure 4. Run menu

Run P Fit (Ctrl+F). This option re-runs the present fit.

Run » Simulation (Ctrl+S). This option re-runs the present simulation or creates a
simulation based on the present fit.
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3.5.4 View Menu

The View menu is shown in Figure 5 and consists of the following choices:
Results of Models, Plot..., and Data....

Battery Life Data Analysis
Fle Edit Run | view Help
esults of Models  » EESREn] Crl+Shift+G
¥ & Monte Carla simulation Ckrl+5hift+5

Figure 5. View menu and model results sub-menu
3.5.4.1 Results of Models
The sub-menu for model results is also shown in Figure 5.

View P> Results of Models P Fitting (Ctrl+Shift+G). This option displays the results of
the fitting calculations, and includes the model equation, the names and variables used,

the values of the fitting parameters, the estimate of errors, and lack of fit information
(Section 3.7.1).

View P> Results of Models » Monte Carlo simulation (Ctrl+Shift+S). This option
displays the results of the Monte Carlo simulation (Section 3.7.2).

3.5.4.2 Plot

The plot sub-menu is shown in Figure 6 and has five choices: Fitting Results,
Var(Y) vs. (-12, (Y -2) vs. ft, it vs. Y , and Monte Carlo simulation (Section
3.7.2.2).

Battery Life Data Analysis - C:\tlvt\default.Life

Results of Models »
[ rir. ) R
Data... Y L Var(Y) vs. (i-1F
L @ i
Lo Lovs.¥
L Monte Carlo simulation  CbrH-Shift+T

Figure 6. View menu and plot sub-menu

View P Plot... » Fitting Results (Ctrl+Shift+N). This option produces a plot of the
experimental data and the fit.
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View P Plot... » Var(Y) vs. (z-1)? (Ctrl+Shift+V). This option produces a plot of the
error model results.

View » Plot... » (Y - /1) vs. fi. This option plots the difference between average and

predicted performance results (e.g., of relative resistance) versus the predicted
performance.

View P Plot... » /1 vs. Y . This option produces a plot of the predicted performance

behavior (e.g., predicted relative resistance) versus the average measured performance
observed during testing. A 45° line is also included in this plot to indicate where the data
should lie for a perfect fit. Data that lie well off the 45° line should be evaluated for lack-
of-fit (Section 2.7).

View P Plot... » Monte Carlo simulation (Ctrl+Shift+T). This option produces a cell-
distribution bar chart.

3.5.4.3 Data

The data sub-menu is shown in Figure 7 and has two choices: Input data and
model. The model sub-menu is also shown in Figure 7 and has three choices: Relative
resistance, Var(Y), and Monte Carlo simulation.

Battery Life Data Analysis - C:htlwt' defaulk. Life

File Edit Run | view Help

Results af Models  »
Flat. .. »

Madel. ., 4 ?’ Rel. resistance
a varlt)

g Monte Carlo simulation

Figure 7. View menu and data sub-menus

View P Data P Input Data. This option displays the input data, and is useful for
comparing the known input data to what the software read from the input file. Figure 8
shows a sample data display with the proper format discussed in Section 3.4. The data
can also be sorted in ascending or descending order by simply clicking on the column
title. When the data are sorted by a particular column, a small arrow (Aor V) will
appear that indicates the direction of the sort. The data displayed in the grid can be
exported to a comma-separated values (CSV) file by clicking on the "Export>>" button
on the right hand side, as shown in Figure 8.

View P Data » Model... » Rel. Resistance. This option displays the degradation
parameter data; in this case, it is the relative resistance. The label will automatically
adjust to the appropriate parameter being fit/modeled by the software.
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View P Data » Model... » Var(Y). This option displays the variance of the output

data.

View P Data » Model... » Monte Carlo simulation. This option displays the results
from the Monte Carlo simulation, including the parameter fits, error variances (i.e.,
SIGMA D is the variance of cell-to-cell effects and SIGMA E is the variance of the
measurement error), life projections, and the lack-of-fit sum of squares values generated
for each simulation trial. A sample Monte Carlo simulation output is shown in Figure 9.
The data displayed in the grid can be exported to a comma-separated values (CSV) file
by clicking on the "Export>>" button on the right hand side.

121 Input Data

REL. RESIST | TIME

| TEMPERATU

4 1.057420408
1.058847333
1.046581732
1.008

1.036573235
1.073861716
1.039183135
1.036420086
1.0407 46604
1.0827 77056
1.076852926
1.0e5102428
1.080662412
1.048342054
1.060843111
1.068891531
1.084583091

0.0863
00863
0.0863
0.0863
0.0863
0.0863
0.0863
0.0863
0.0863
0.0863
0.0863

10,0863
0.0863
0.0863
0.0863
0.0863
0.0863

313
313
33
33
313
33
33
313
33
3205
3205
3205
3205
3205
3205
3205
3205

Export 3> |

Figure 8. Input data display

Sirnulation conditions

EE,’-“'Data from Monte Carlo simulation

TEMP: 203K

BO

E wperimental Conditions
Murnber af trials: 1000

IR

[P

| SIGMA_D

| SIGMA_E

| Life Estim £ | Sum of Squar

Expaort »>

4 19.92123755
18.62538338
16.73428257
16.87605665
18.45383387
1776485279
1864430745
1763522057
17.85764309
18.17688730
17452534658
19.53284124
18.11398182
18.34554779
17.67988422
17.69702435
17.94003034

-6810.530434
-6396.540157
-5785.197604
-5830.935621
-6328.851518
-B116.750338
-6388.943216
-6071.024508
-6133.474391
-6243.734570
-B026. 469346
-BE74.069354
-6222.044707
-6296.091155
-G086.578643
-60490.344583
-6172.238483

0587035265
0.554684651
0.601342035
0605338543
0631072381
0.627540235
0.63E341657
0.519511302
0.520303272
0.540245927
0.534557367
0.553261911
0.527603069
0.533027300
0.521682136
0.519540482
0.531246983

0.003059836
0015196358
|0.004080574
(0004717437
|0.006414363
0008976027
0.000833827
0.003371531
0.001734356
0.000346747
|0.007353836
0
|0.0001 72202
0.003821436
0.003335514
0.006284833
0001058543

8662218988
R.E71972346
0.0007241 26
0.000105478
5955341863
7082270371
9.965571242
0.000121337
0.0007124508
9.847407133
5,781 206533
0.0007113880
0.000153713
7.448992468
9741802571
0.000135132
9.6808551 86

10.00151932
10.00231802
10.00244538
10.01173320
10.013583268
10.01446545
10.01870330
100187330
10.02367436
10.02528369
10.02915203
10.03706753
10.03789007
10.04354655
10.05080640
10.05526483
10.06001532

19.92579054

4.535442802

1499535184

2441456504

1126251571

8431759647

3.70E236449
3142245143
1143375316

15.68781002

2507672085

(160330261

11.72006032

1013191037

17.20986335
5.226843320
18.12585242

Figure 9. Monte Carlo simulation data display
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3.5.5 Help Menu

The main help screen is shown in Figure 10 and provides a detailed description of
the program’s capability and navigation.

o = &

Hide. Back

Pint  Dptians

Coiterts |md5x |
@ File menu

-emmm || Battery Life Data Analysis Software
@ Edit menu

I [=] 5|
@ Runmenu

[ |
Curve Fitting and Life Projection
@ View menu
Traubleshaating

[3] Third party software
— —
A

Figure 10. Software help file
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3.6 Using the Software
3.6.1 Creating or Opening an Existing Fit/Simulation File

Creating a new fit or simulation (File » New P ) will immediately launch the
appropriate wizard. When opening an existing file (File » Open), the user will be
prompted with a file-selection dialog box, similar to that shown below in Figure 11. The
BLE software files are saved with a “*.Life” extension and contains information
regarding what type of operation is to be done (fit, simulation or both) and the values of
other parameters used in the program.

Open an existing fit/simulation e _Qlil

Look in: IE} thyt j ] £ E-

teskings

testingZ {backup copy 9-Jan-0&)
TestingZ {backup copy)
TestProjectl

threads

TLVT

TLYT_Figures

) TLY T Setup

VEMenuImage

ViewTesk

Diocun

E.

Dezkiop

4

HEE Wwindowsapplication1

waorking copy
El default, Life

[+

File narme: I j Open I
Files of type: IBatter_l,l Life files j Cancel |
A

Figure 11. File selection dialog box
3.6.2 Fitting and Simulation

Once a file has been opened or created, there are three options available in this
software package for fitting and/or simulating the data:

1. Fit Only. This option solves for parameter values based on input data and the
model equation.

2. Fit and Simulate. This option solves for parameter values and simulates life based
on those fitted values.

3. Simulate Only. This option simulates life based on user-provided parameter
values with the assumption that the fit was completed independent of this
software package.
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3.6.2.1 Fit Only

The program will prompt the user to identify the stress factor groups within the
dataset to include in the fitting process. A sample dialog box is shown in Figure 12, with
temperature (in Kelvin) identified as the stress factor of interest. The user may
select/unselect the datasets indicated by the experimental stress condition(s) by clicking
on the check boxes or on the Select All or Unselect All buttons. Click OK to proceed to
the fitting process. The results of the fit can then be seen by clicking on the View menu
choices (Section 3.5.4).

ﬁi Include or exclude data set{s) = |EI|E|

Diatasets representing combinations of stress factars can be
included or excluded in the fitting calculations. Click to
selectfunselect,

— Stress conditions: TEMPERATLUIRE
[~ 303

fv 313
v 3205
v 328

[ nzelect Al Select Al | 0k, Cancel

Figure 12. Include/exclude dataset(s) dialog box
3.6.2.2 Fit and Simulation

The program proceeds through the function described in Section 3.6.2.1, then
prompts the user to run the simulation. The dialog then becomes similar to that found in
the Fit Wizard discussion (Section 3.6.3). The results of the fit and simulation can then
be seen by clicking on the View menu choices (Section 3.5.4).

3.6.2.3 Simulation only

The dialog is very similar to the description in Section 3.6.2.2, except that no
fitting is performed and the parameters of the equations must be provided by the user.
The results of the simulation can then be seen by clicking on the View menu choices
(Section 3.5.4).

3.6.2.4 Life Confidence Limits

There are two types of life projections that can be performed with this program,
one based on experimental data (Section 3.6.2.2) and the other based on parameters
provided by the simulation only option (Section 3.6.2.3). The projection based on
simulations only is primarily intended to establish a viable life verification experiment, so
only the worst-case scenario (i.e., lower confidence limit) needs to be considered
(Reference 4). The projection based on experimental data uses both an upper confidence
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limit (UCL) and a lower confidence limit (LCL) to show the full range of uncertainty
with regard to the expected life. A typical display to change just the lower confidence
limit is shown in Figure 13. The life projection will then be calculated using the input
value(s), then displayed on subsequent dialogue boxes and reports.

& Edit confidence level x|

Confidence level

LCL %2 a0

Figure 13. Editing the lower confidence limit

3.6.3 Fit Wizard

The Fit Wizard assumes that time is an independent variable for all modeling
equations. The fitting process is as follows:

1. Specify the data to be fit
2. Associate variables to the data parameters

3. Specify the life equation and the corresponding transforms using the identified
variables

4. Import test data from file
5. Identify stress factor combination(s) to include in the fit
6. Perform the fit

With each dialog box in the Fit Wizard, the user can move forward by clicking the
“Next” button. If all of the entries were not appropriately filled, the software will prompt
the user for the missing information. To update or modify a previous entry, press the
“Back” button to return to the previous screen.

3.6.3.1 Defining the Data

The first step in the fitting process is to define the type of data that are to be used.
Figure 14 shows the list of available dependent and independent variables in the software
tool. The dependent variables include resistance, capacity, energy, and power, and only
one can be selected per fit. The independent variables include time, temperature, state-
of-charge (SOC), power, energy, capacity, discharge cutoff, and charge cutoff. More
than one independent variable can be chosen per fit, and they can be selected by clicking
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on the variable name. For example, a total of three variables (one dependent, and two
independent) have been identified for the fit in Figure 14.

.'.'. Data Emport Wizard -- Step 1
~Define data in file

Itis msgumed that all dais are ime-based. i
There may be other independent vanables o include. Click to aah:t
click again to de-select I

Dependent wvanabl
?&ﬂmum} g Independent variables

Figure 14. Typical display to define the data in a file
3.6.3.2 Associate Variables with the Definitions

Once the data have been defined, the next step is to assign variables to the
parameters. Since there are three parameters identified in the example shown in Figure
14, the software will prompt the user to identify three algebraic variables, as shown in
Figure 15. The algebraic variables can be more than one letter and the names are not
case-sensitive (e.g., “t” for time and “T” for temperature will not work). The first
variable name in the list is the dependent variable (e.g., resistance). The software will not
associate any physical process with the name and, hence, does not implicitly know if the
dependent variable increases or decreases with time. Therefore, the "Increases with
time" box to the right of the dependent variable text box should be checked when
appropriate (e.g., it is checked in the case of resistance, but wouldn’t be in the case of
capacity or power loss).

All temperatures in the fitting and simulation processes must be in Kelvin. If the
data input already has temperature in Kelvin, put a “k” in the “Temperature: Celsius/

Kelvin” text box. Otherwise, place a “c” in the text box, and the software will
automatically perform the conversion to Kelvin.

At this stage in the software development, only calendar-life data in units of time
(e.g., weeks, months, years, etc.) are considered for fitting. At some future date, cycle
life data will also be implemented in the software tool as well. Until then, the “Cycles”
option is unavailable.
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{j Data Import Wizard - Step 2 - Yariables il

—Associate names with wariables

Yariable Mame Yariahle

Resistance lr ¥ Increases with time
Time |t * Calendar © Cycles
Temperature |temp

Temperature: Calsiug/Felvin lk

< Back MHext » Cancel

Figure 15. Typical display to associate data and variables

3.6.3.3 Specify the Equations

The life and transform equations must be entered next. The non-linearized form of
the life equation is entered in the upper text box marked “Modeling equation,” and must
contain all of the independent variables identified in the previous step (Section 3.6.3.2).
The form of the equations must be of the appropriate mathematical operations and
functions. The “Help” button will identify the available algebraic symbols, as shown in
Figure 16. Do not include an equal sign (i.e., “=") at the beginning of the expression.

I x

Entering equations

Enter the equations as you would algebraically, except omit the
symbols to the left of the equals sign. Thatis, ifyvouwantto use
w=x+1 ag an equation. enter anlythe x+1 in a box,

The program understands the following operations/functions.
They can be used in any arder and nested together,

+ (add)

- [subtract or negate)

* {rultipha

{idivide)

“lraize ta)

In (natural log)

Exp (Exponential).

It alzo understands algebraic logic: for example, expressions like
1+exp(bl+b1tempr™p can be used The expressions are not
case-zensitive, g0 'T' is the same as 1.

OF.

Figure 16. Available algebraic functions
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The life equation must be easily linearized through simple mathematical
operations (Section 3.3). The terms in the linear form of the equation are to be entered in
the group of text boxes labeled as “Transform equations.” The number of transform
equations will depend on the number of independent variables identified in Section
3.6.3.1.

Figure 17 shows the dialog box for specifying the equation and transforms using
the example variables that have been identified (e.g., resistance, time, and temperature).
The equation is based on the default model given in Section 2.2. The “Default Model”
button in the dialogue box will automatically fill in the text boxes with the appropriate
model and transforms using the variable labels identified in Section 3.6.3.2. In the
example, the life equation is R=1+exp(bo+bi/temp)t”. The linearized form is, therefore,
In(R-1)=by + b;/temp + zInt. The terms containing the three variables entered above are
entered in the boxes; the fitting constants, by, b; and z, are not entered. The order in
which the transform equations are entered does not matter. The equations are not case
sensitive and there is no limit to the number of terms in them (Section 3.3).

a Data Import Wizard -- Step 3 -- Specify Equations LI

Input modeling and transform equations. The modeling equation relates a resultto independent variables and is in the
form, ¥=f{a.b.c...). The coefficient/power of an independent wariable should not be a constant. but should be written as
afiting parameter. The transform equations are used for fitting the data and are broken down by variahble, as in X1 =f
7). %2=q(a). ®3=hib). ®d=ijc). ... where f, g, h.i. ... are simpler functions of one varishle.

Dependent-variable transform equation should be written in terms of B,

Modeling equation
Y=|1 +EXF{BO+B2/TEMP*T "Bl

 Transform equations
f=In(P-1)
g=In(T)
h=[1/TEMP

Default Model | < Back I Mext » | Cancel Help
Figure 17. Typical display to specify equations

3.6.3.4 Import Test Data

The next step in the Fit Wizard is to import data from an Excel workbook or
comma-separated value file. The data must be arranged in columns and normalized to
time t = 0 (see Section 3.4 for data formatting requirements). Additionally, if the relative
change between measurements is greater than 50% (increase or decrease), the error
model strategies will not be applicable and the user will then see a warning to this effect
and have the option of continuing or not. Figure 18 shows a typical display for file
selection. Only one file can be selected at a time.
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4] |13
Filt name: |RPT7 dat w SOC s =l Qpen |
Fies of type: |Encel and Data fhes dot. b "cav."ols) 7 Concel |

Figure 18. Typical display to select a data file

Once a file has been selected, the wizard will produce a display similar to that
shown in Figure 19. In this example, an Excel workbook was selected as the data file, so
the worksheets names are shown on the left side of the display. Clicking on the worksheet
with the data of interest produces a display similar to Figure 20. If an error was made in
the file selection, click Open another file... to change source data. A similar display will
be shown if data are read from a comma-separated-values file.

ﬂ Opening an Excel file: C:h vt RPTT dat w SOC.xls I __>g
Itis assumed that all data are normalized to t=0.

Opening an Excel file

Select sheet with data. Sheet preview

Open another file.. | Cancel | Ok I

id Dpening an Excel file: C:\Hyt\RPTT dat w SOC.xls
Itis assumed that all data are nomalized 1o t=0.

Opening an Excel file
Select sheet with data Sheet preview Name : column in gnd
gn%ﬂz Contents of first two rows of UseThis e
eet -
e B le  |o L | :I TEMPERATURE
P Time Temp Felative Re
0 303 1.0337634 7
] »
Open anather fils... | Cancel | QK |

Figure 20. Typical display to select columns from a particular worksheet
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In Figure 20, the “UseThis” worksheet is selected. In this case, the program
displays the contents of the first two rows of the selected sheet in the preview window,
allowing for easier column selection.  The variables are associated with the
corresponding data by clicking on the first cell of the appropriate columns. For the
example shown in Figure 20, the mouse-click sequence would be columns C-A-B,
corresponding to the list of variables identified on the right-hand side. Once a variable
has been assigned, the column location is identified in the right window (e.g. “TIME”
will change to “TIME: A”). If a mistake is made, either continue choosing columns until
display cycles back to where the error is or click on the incorrect name-column
combination on the right and then click on the correct column. It is assumed that the time
data are in calendar years and that the temperatures are in Celsius or Kelvin. If the
temperatures are in Celsius, the program will convert them to Kelvin (Section 3.6.3.2).

3.6.3.5 Select Stress Factor Combinations

After the data are imported, they will be analyzed and grouped according to the
stress factors previously identified (see Figure 14). There is also an opportunity to
include or exclude a set of stress conditions if the data are not well-behaved. Figure 21
shows the display for this step using temperature as an example stress condition.
Following this step, the software proceeds to the fit, and the results can be displayed as
shown in Section 3.7.

i”ilru' haihe o exchude data set{s)

Datazets representing combinations of siress factors can be
incleded or excluded in the fiing calculafions. Click to
seleciunselact

- Stress condlons: TEMPERATURE
303

33
W 3205
[+ 328

Figure 21. Selecting which stress factors to include in the fit calculation
3.6.4 Simulation Wizard

Simulation is performed to calculate a life projection based on an assumed model,
and, if experimental data are available, to judge the lack of fit between the test data and
the model. As with the Fit Wizard (Section 3.6.3), the Simulation Wizard assumes time
is an independent variable for all modeling equations. The simulation process is shown
below.

1. Define the data to be used
2. Associate variables to the data parameters

3. Specify the life equation and the corresponding transforms
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4. Enter simulation parameters
5. Specify simulation conditions
6. Perform the simulation

With each dialog box in the Simulation Wizard, the user can move forward to the next
step by clicking the “Next” button. If not all of the entries were appropriately filled, the
software will prompt the user for the missing information. To update or modify a
previous entry, press the “Back” button to return to the previous screen. The first three
steps of the Simulation Wizard are the same as the Fit Wizard, and are discussed in
Sections 3.6.3.1 through 3.6.3.3; Steps four through six are described below.

3.6.4.1 Enter Simulation Parameters

The parameters affecting the simulation results are entered using the form shown
in Figure 22. Most of the fields will be automatically filled in by the software program
based on the results from the Fit Wizard (Section 3.6.3). The user must enter a value for
the percent-change of the degradation parameter at end-of-life (EOL). A typical EOL
value is 30% degradation. The other fields can also be adjusted as necessary, though it is
not recommended if the user wants the simulation to replicate the actual experiment as
closely as possible. For example, if the measurement error is independently determined
(Section 2.3.2), then this value can be entered in the appropriate field. The initial
parameter values (€.9., B2, B1, and B0 in this case) should be guesstimated based on
expected performance. For example, if the model generally assumes a square root of
time dependence, the value for “B1” in Figure 22 should be close to 0.5.

E;l?.lMonte Carlo Simulation Wizard -- Step 4 x|

—Simulation parameters

The cells are divided into groups. Each group is
exposed toone set of conditions for the
experimental variables, How many groups of cells
are there?

RPT frequency, wesks

indicates an increase; a negative one, a decrease)

|3
|4
armount of change at EOL, % (a positive value I30

Cell-to-cell variation (1o ), % 5.6547 14625

Measurement errar (1o 3, % Il.llDDDDSEI?

—Initial Parameter Yalues

Model Equation: 1+EXP(BO+B2/TEMPY*T 81

Parameter MName Agsoc, Yarisble Value

B2 TEMP [-6235.5007 1898587
BO =--constant--= Im
Bl T 0516751550870z

Cancel | OK |

Figure 22. Display allowing entry of simulation parameters
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3.6.4.2 Specify Simulation Conditions

The experimental conditions (temperature, duration, number of cells, etc.) are
then specified for all groups, as indicated in Figure 23. There is no limit to the number of
groups that can be used, but the total number of cells in the simulation is limited to 500.
The Monte Carlo simulation parameters for life prediction are also entered at this stage.
These values include the temperature (in Kelvin), the upper and lower confidence limits
(only the LCL is needed if simulating results without experimental data), and the number
of simulation trials. Click on OK to perform the simulation and life prediction.

&4 Specify conditions x|

— Experimental Conditians

Group #1 Group #2 i Group #3

TEMP |313 TEMP I3gg_5 TEMP |325

DURATION.YR.  [ogo41 DURATION. YR [ogodl DURATION.YR  [ogoa1
Mo of cells Igi MNo. of cells 197 Mo, of cells Igi

—Monte Cato
—Walues for life prediction ————————

TEMP —

LCL % fs—

UGCL, % s

Mo oftrials |mnn

Canicel I

Figure 23. Experimental conditions and Monte Carlo parameter entry

3.7 Reports and Displays
3.7.1 Model Fit Results

The results from the model fit can be found by clicking on View P Results of
Models P> Fitting (Ctrl+Shift+G). An example result is shown in Figure 24, and includes
the model equation, the names and variables used, the values of the fitting parameters, the
estimate of errors, and lack of fit information. The numbers in parentheses given for each
of the fitting parameters are the bootstrap standard errors determined from the Monte
Carlo simulations. The values given in the error model section, 082 and 052, represent the
variances of the measurement error and cell to cell effects, respectively. They are derived

from the regression of the variance of the experimental dependent variable, Y, on (,& - 1)2 ,
where 4 is the predicted value of Y. The variance of the dependent variable, Var(Y),
and £ are computed for each experimental condition (e.g., temperature/time) to form the

data set used in this regression. Alternatively, the measurement error will reflect the
independently determined value, as discussed in Section 2.3.2.

The value of the lack-of-fit statistic (SS,,-) obtained with the actual data is
compared with the empirical cumulative distribution function (CDF) of the SS, - values

obtained via the simulation trials to assess model inaccuracy. If the lack-of-fit statistic
(SS,or ) obtained with the actual data exceeds the (1—ea)-100" percentile of the
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simulated SS, - values, then it can be concluded that the model is inaccurate. Normally,

a small value for « is selected (e.g., 0.05). In practice, the CDF is evaluated at the value
of the lack-of-fit statistic (SS - ) obtained with the actual data. If the evaluated CDF

point exceeds (1—«), then it is concluded that there is evidence for lack of fit. Pressing

the "View CDF" button will display the empirical CDF curve and the evaluated CDF
point as shown in Figure 25. The empirical CDF curve may take some time to display
fully.

A~ Results from fitting _;;:.' x|

Fel. Resistance model

todel Equation:
F=1+EXP{BI+B1/TEMPPHT P

Mames and Yariahles
REL RESISTAMCE: R
TIME: T
TEMPERATURE: TERMF

Yalues of fiting parameters (hootstrap standard error):
BO=18131901.189)

B1=-6235.5007 (352.474)

P= 05168 (1.7954E-2)

Etror model
2
O, =1.2321E4
2
'35 =3.1976E-3

Estimate of measurement error, 5 1.1

Estimate of cel4o-cell variability, 32 5.ER47

Lack-of-Fit: Degradation model

Sum of Squares 51.6341 Wiew COF |

Etmpirical COF Faint 0.49

Conclusion Lack of fit detected

Figure 24. Example results from fitting display
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1.00

0801

Empirical CDF

0.00

Sum of Squares

Figure 25. Example CDF curve

3.7.2 Monte Carlo Simulation Results

3.7.2.1 Life Estimation

n.0o 0.0 20.0 30.0 40.0 50.0 B0.0 70.0 B0.0

0.0 100.0

The results of the Monte Carlo simulation can be found by clicking on View »
Results of Models » Monte Carlo simulation (Ctrl+Shift+S). Figure 26 shows an
example of life estimation when using experimental data (i.e., a life estimate with an
upper and lower confidence limit). If a life estimate is based only on simulated data
derived from the input model parameters, the resulting prediction will typically be

displayed as shown in Figure 27, with only the LCL life projection.

k 4 Life Estimate

Life estimate at 95% LCL= 8.6y
Life estimate at 95% LICL= 15y

Goal
|
0 5 10 15 20 25 30
Time, ¥

Figure 26. Life estimate display using experimental data
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Battery Life x|

Ll
\]}) The 90%: LCL is 9.8 vaars

Figure 27. Typical life projection result display from Monte Carlo simulation

3.7.2.2 Data Plots

As mentioned in Section 3.5.4.2, there are five data plots available in the View »
Plot... » menu option. A sample fitting results plot is shown in Figure 28 and shows the
experimental data and the resulting model fit. The numbers on the right of the model
output indicate the test temperature (in Kelvin). An example plot of the error model
results (i.e., Var(Y) vs. (/-1)?) is shown in Figure 29, where 4 is the estimated

performance. A plot of (Y - /1) vs. f1is shown in Figure 30, where Y is the average

measured performance. A plot of & vs. Y is shown in Figure 31, including the 45° line

that indicates a perfect fit. The simulated data in Figure 31 shows evidence of lack-of-fit,
as concluded in the summary display (Figure 24). Finally, a sample cell-distribution bar
chart determined from the Monte Carlo simulation is shown in Figure 32. This particular
plot shows that over 50% of the cells have a predicted life of about 12 years or more, and
that the highest population group has a predicted life of 11 years.

1.35

1.30+

1.25¢

o]
[sJsls]

5]
o
1201 ©
o
o

Rel. resistance

1.15¢

1.10¢

1.05¢

0.00 010 020 030 0.40 0.60
Time, years

Figure 28. Experimental data and fitted curves
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Figure 31. Predicted performance behavior vs. the average measured performance
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Figure 32. Cell distribution bar chart
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3.7.3 Report Preview

A preview of the results assembled by the software can be found by clicking File
» Preview Report (Section 3.5.1). A sample report is shown in Figure 33. This is useful
in viewing the report prior to printing it on paper. The '<Prev' and 'Next>' button allow
navigating between and among a multi-page report.

BattEry Life Data Analysis - C:tlvt\default.Life - [Print preview]

o] Al Edit Run View Help

=18 x]
-l x|

< Prev Next >

Battery Life file: C:\tlvi\default. Life
Data file: C:#hARPT? dat w SOC s
Data sheet: UseThis

Maodel Eguation
R=1+EXP (BO+BZTEMP) T'E1

Transform eguations
Eq. 1: LN(R-1)

Eq 2: LN(T)

Eq. 3: 1/TEMP

Mames and Variables

REL. RESISTANCE: R

TIME: T

TIME UNITS: Years
TEMPERATURE: TEMP

INPUT TEMPERATURE UNITS: K

“alues of parameters (bootstrap standard errar)
B2= 6335 6952 (348.7182)

BO= 185136 (1.0909)

B1=056163 (1.7884E-2)

Error Model Results:

53 =47025E3

Estimate of cell variability, %=6.8576

Dz =7 BE7AES

Estimate of measurement errar, %=0 8756

Fit of model results to data:

1.35

1.3

125

Rel. resistance

0o o1 02 03 04 06
Time, years

Figure 33. Report print preview
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3.8 Troubleshooting

The following section identifies known issues with the software development as
of the publication of this manual, and their associated solutions.

3.8.1 Text-entry boxes and/or buttons are not in the correct positions or
appear to be crowded

Solution: Change the settings for the display. Close the application. Right click
on the desktop and select properties. Click on the tab that says Settings. Click on the
button that says Advanced. Change the DPI setting in the Display group box to 96 DPI.
Click OK twice.

3.8.2 The application is running on a network and an error occurs when
trying to open a Life file

Solution: A message box similar to the one shown in Figure 34 should appear.
This error occurs only when the application is running on an intranet. Download the
NET 2.0 SDK from Microsoft and follow the install instructions given in
http://technet.microsoft.com/en-us/library/bb742442.aspx. Reboot the computer. Click
Start -> Programs -> Administrative Tools -> Microsoft .NET Framework 2.0
Configuration. Click on the 2.0 Configuration snap-in followed by OK. Click on
Configure Code Access Security Policy -> Adjust Zone Security -> Make changes to this
computer -> OK -> Local intranet. Move slider to Full Trust. Click Next -> Finish.
Close the configuration tool window. The application should run normally now.

- &pplication attempted o perform an operation not allowed by the
1 gecurty policy. To grant thiz application the required permiszion,
“*t.r) contact vour system administrator, or uze the Microsoft HET
Frarmewaork Configuration tool,

[f pou click Continue, the application will ignore this emar and attempt
bo continue,

Hequest for the permizzion of tpe

‘Suztem. S ecuriby.Permizzionz. Filel DPermizzion, mzcorlib,
YWersion=200.0, Culture=neutral,

FublickeyT oken=b7#7 ahchE1 3342039 failed.

» [Detals Contiriue

Figure 34. Network error box
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Appendix A

Methods for Estimating Model Parameters

1 INTRODUCTION

This appendix summarizes the statistical methodology used for estimating the
parameters associated with the degradation and error models. In both cases a linear
model that can be represented by the form shown in Equation (A1) is assumed, where Z
is a response variable, the X;’s represent M explanatory variables, and the £’s are model
parameters which are to be estimated. To achieve this linear form, it may be necessary to
transform the natural response and/or one or more of the natural explanatory variables to
a linear form. For example, the response could be transformed as shown in Equation
(A2), where Y is the underlying performance metric (e.g., relative resistance). Other
transformations could also be applied to explanatory variables, such as the inverse
temperature.

L=, +0 - X+, - X, +...+ By - Xy (A1)
Z =log(Y —1) (A2)

For estimating model parameters (/%), it is assumed that there are N observations,
each containing the observed value of the response variable, Z, and the associated values
of the explanatory variables, X; (€.g., inverse temperature). Thus, the data consist of a set
of observations, as shown in Equation (A3). The model parameters are then estimated by
using a robust linear regression procedure (Reference 9). The purpose of using a robust
regression procedure rather than ordinary least squares is to reduce the influence of
anomalous data on the parameter estimates.

{(Z @)X, G0). X, )., X, ()i =1,2,...,N} (A3)

An illustrative example of this methodology is provided in Reference 6.

2 ROBUST LINEAR REGRESSION

Two specific cases for estimation are considered. In the first case, the model
contains an intercept term (/). Here, the initial step is to compute the average and
standard deviation of each of the explanatory variables, X;. This yields {)? " X paenes X M }
and {Sl,Sz,...,S,\,I }, respectively. These explanatory variables are then mean-centered
and scaled as shown in Equation (A4). Therefore, in the case with an intercept, the
design matrix (D) has a size of “N by M+1”, and is of the form shown in Equation (AS).
X, (uS)— X, (Ad)

]

()=
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In the second case for estimation, the model does not contain an intercept. Here,
the explanatory variables are not mean-centered and/or scaled, and the design matrix (D)
has a size of “N by M”, and is of the form shown in Equation (A6).

X,(1) ... X,
D=| : .. (A6)

Once the design matrix has been determined, initialize a weighting matrix (W) of
size “N by N” with the identity matrix, and set Z = (Z 1),Z(2),.. .,Z(N ))T , Where Z is the
response variable of the form shown in Equation (A2). Next, repeat the following matrix
computations three times:

b=(D"-W-D) -D"-WY (A7)
R=Z-D-b (A8)
W = diagonal matrix with elements from BIWEIGHT(Ry,R2,...,Rn) (A9)

The values for b in Equation (A8) are determined from Equation (A7) and the
corresponding explanatory variables. In the first case (with an intercept), the estimated
model parameters are given by Equations (A10) and (A12). In the second case (without
an intercept), the estimated model parameters are given by Equation (A12).

. X X X

B :(b —pb-2l_p .22 _p _M] (A10)
0 0 1 Sl 2 82 M SM

~ Db .

ﬂi:S— fori=1: M (A11)

ﬁi =b fori=1: M (A12)

The BIWEIGHT function in Equation (A9) produces an N-dimensional output of
weights from an N-dimensional input. It is based on Tukey’s biweight function with ¢ =
6 (Reference 10). Letting BIWEIGHT{R1 Ry, Rn} represent the biweight function and

its input arguments, determine the weighting function as follows:
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1.  Compute the median absolute value (MAV) of the R;’s determined from
Equation (A8)

2. Compute standardized values of R;’s as shown by Equation (A13)

3. WEIGHT, =0if Z,>1 fori=1:n

4 WEIGHT, =(1-U2)ifZ, <1 fori=1:n

5. Return weights (W) to Equation (A9). The updated diagonal elements of W
are given by the values WEIGHT,,WEIGHT,,...,WEIGHT, }.

u =%
= /[c-MAV) (A13)

2.1 lllustration of Linear Model Forms

The default degradation model has the linearized form shown in Equation (A14).
This can be put into the form of Equation (Al) using Equation (A2) and the
corresponding transformations shown in Equations (A15) through (A17), where the X;’s
are generic explanatory variables as defined by Equation (A3).

log(u(T;t)-1)= 8, + 5, -Tl+p-10g(t) (A14)
X, :TL (A15)
X, =log(t) (A16)
B=p (A17)

The default error model has the linearized form given in Equation (A18), with the
corresponding transformations shown in Equations (A19) through (A22).

Var (Y, (T;t)) = o2 -(u(Tst) 1) +0? (A18)
Z =Var(Y,(T;t)) (A19)
X, = (u(X;t)-1) (A20)
B, =2-a* =’ (A21)
B, =0o; (A22)
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3 POSSIBLE COMPLICATIONS WHEN ESTIMATING ERROR
MODEL PARAMETERS

Due to statistical fluctuations in the data, use of the estimation procedure might
result in &> <0(ie,B,<0) oré; <0 (ie, B <0). Such negative estimates of

variances can and should be regarded as nonsensical and the parameter estimates should
be modified as discussed below.

3.1 Case 1l: 4*°<0

In this case, the hypothesized measurement error was not detected. First, it is
recommended that an alternative non-negative estimate fora” be specified (i.e., &° (alt)).

This estimate could be based on an independent assessment of the measurement error
(Section 2.3.2, References 7-8). If the measurement error variance is believed to be

vanishingly small when compared to o, then it might be prudent to consider @’ (alt) =0.

Once the alternative estimate of &’ is available, &, must be re-estimated. This

can be accomplished by first re-parameterizing the error model as shown in Equation
(A23).

Z =Var(Y,(X;t))-2-6>(alt) = B, -(u(X;t) 1)’ (A23)

For purposes of regression, each observation again consists of Z and X;, where X; is the
same as defined in the first column of Equation (A6) and Z is now the “within-group”

variance of the response minus twice @°(alt). In this case, however, use the robust linear
regression procedure without an intercept. The resulting estimated slope (,5’1 ) provides
the value for &2 (alt).

3.2 Case 2: ;<0

In this case, the hypothesized random cell-specific proportional effect is not
detectable. An alternative estimate for ” can be determined with Equation (A24),
where (Yl R AU ,Ynj ) are the n; values of the response (e.g., relative resistance) for the jth

of N groups defined by stress condition and time. An alternative estimate for &, would

be to set it equal to zero, & (alt)=0.

i(nj —1)~Var(Y1,Y2,...,Ynj)

= (A24)

1
’ i(nj _1)

i=1

&’ (alt) =
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